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ABSTRACT

Rapid acceleration of cloud-top outflow near vigorous storm updrafts can be readily observed in Geosta-

tionary Operational Environmental Satellite-14 (GOES-14) super rapid scan (SRS; 60 s) mode data. Con-

ventional wisdom implies that this outflow is related to the intensity of updrafts and the formation of severe

weather. However, from an SRS satellite perspective, the pairing of observed expansion and updraft intensity

has not been objectively derived and documented. The goal of this study is to relate GOES-14 SRS-derived

cloud-top horizontal divergence (CTD) over deep convection to internal updraft characteristics, and docu-

ment evolution for severe and nonsevere thunderstorms. A new SRS flow derivation system is presented here

to estimate storm-scale (,20 km) CTD. This CTD field is coupled with other proxies for storm updraft lo-

cation and intensity such as overshooting tops (OTs), total lightning flash rates, and three-dimensional flow

fields derived from dual-Doppler radar data. Objectively identified OTs with (without) matching CTD

maxima were more (less) likely to be associated with radar-observed deep convection and severe weather

reports at the ground, suggesting that some OTs were incorrectly identified. The correlation between CTD

magnitude, maximum updraft speed, and total lightning was strongly positive for a nonsupercell pulse storm,

and weakly positive for a supercell withmultiple updraft pulses present. The relationship for the supercell was

nonlinear, though larger flash rates are found during periods of larger CTD. Analysis here suggests that

combining CTD with OTs and total lightning could have severe weather nowcasting value.

1. Introduction

Experimentation with fine temporal resolution (#1min)

super rapid scan (SRS) operations for Geostationary

(GEO) Operational Environmental Satellite (GOES)

data over deep convection (DC) has revealed that out-

flow acceleration and turbulent motion in overshooting

cloud tops (OTs) associated with strong storms can now be

observed (Schmit et al. 2013; Bedka et al. 2015; Line et al.

2016; Apke et al. 2016, hereafter A16; Bedka et al. 2018). It

is natural to assume that this acceleration is associated

with updraft intensification, though the correspon-

dence with SRS GEO satellite inferences of these

flows and what occurs internally with updrafts in DC

has not been documented. There is clear operational

and research value in the ability to objectively inferCorresponding author: Jason Apke, jason.apke@gmail.com

OCTOBER 2018 APKE ET AL . 3461

DOI: 10.1175/MWR-D-18-0119.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:jason.apke@gmail.com
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


updraft characteristics in DC, as a strong updraft can

facilitate large hail growth (Pruppacher and Klett

1997), lead to the formation of strong downburst winds

(Fujita 1981), and promote processes involved with

tornadogenesis at the ground (Orf et al. 2017). For

example,Witt andNelson (1991), Boustead (2008), and

Blair et al. (2011) all used the maximum single-Doppler

radar–derived radial divergence to infer the strength of

observed updrafts and found positive correlations to

ground-reported hail diameter. Schultz et al. (2009,

2011) found that ‘‘jumps’’ in observed cloud-to-cloud

and cloud-to-ground (total) lightning flash rates (FRs) are

related to strong updraft acceleration that precede severe

weather (strong winds .25ms21, large hail .2.54cm in

diameter, and tornadoes) by as much as ;20min. It is pos-

sible that updraft characteristics in DC can be similarly in-

ferred via automated retrieval of stormoutflow rate depicted

by SRS GEO imagery.

A16 found that SRS data could be used to objectively

derive realistic gridded storm complex-scale (.20km

storm-top diameter) anvil-level flow fields over DC using

cloud feature tracking from visible (VIS) imagery, also

known as mesoscale atmospheric motion vectors

(mAMVs; Bedka and Mecikalski 2005). Unfortunately,

no validation yet exists on SRS mAMV datasets given

the recent availability of imagery with sufficient navi-

gation and registration quality. It is therefore unclear if

objectively derived flows from mAMVs over DC, such

as cloud-top horizontal divergence (CTD), represent

motion consistent with understanding of dynamics in the

atmosphere, or if they represent noise present in the

imagery itself. For example, derived CTD over DC

through mass continuity, if physically meaningful,

would be maximized where updrafts are the strongest

(specifically, where the change in vertical mass flux

with height is minimized) and collocated with other

indicators of strong updrafts at the cloud top. As will be

discussed in this article, however, there are several

limitations to deriving mAMVs with 1-min imagery,

which may change derived CTD. The sample size from

A16 was too small (six storms) to determine if CTD

represented a consistent and physically meaningful

signal, and the derived flow fields in the sample often

exhibited artifacts in laminar cloud fields where

mAMV spatial density was low.

This paper seeks to expand upon previous studies by

relating an updated GOES-SRS CTD derivation system

to other storm intensity proxies derived from satellite,

ground-based radar, and very high frequency (VHF)

lightningmapping array (LMA) data. The goals are 1) to

understand if SRS-based CTD products provide mean-

ingful and temporally consistent characterizations of

updrafts in DC and 2) to determine the relevance of

updraft accelerations inferred in these multisensor

products for severe weather nowcasting. Extending the

findings of A16, we hypothesize that storm-scale CTD

(,20km; finer than A16) should peak in space and time

near OT regions depicted by GOES, and the CTD

maximum will further be correlated to internal and

near-cloud-top updraft characteristics such as updraft

volume and magnitude. The findings here will both di-

rect development of future products and further our

understanding of observed outflow over DC in next-

generation GEO satellite imagery data.

2. Background

a. Mesoscale atmospheric motion vectors

AMVs have been derived from GOES imagery op-

erationally for over 20 years (Velden et al. 1997, 1998).

The AMVs are derived by tracking targets (such as

gradients, minima, and maxima) in a sequence of three

GOES images (Nieman et al. 1997), typically separated

by ;15min. The heights of identified targets are first

estimated by comparing infrared (IR) and water vapor

(WV) channel brightness temperature (TB) to numeri-

cal weather prediction (NWP) data (Nieman et al. 1993).

The same NWP information is used to forecast future

target displacement to the next GOES image. Tracking

in the AMV approach is typically sum-of-square error

minimization between the brightness counts of the tar-

get and a search region of equivalent size in the next

image within a permissible area around the forecast

displacement vector. With three images, this operation

is repeated backward in time and the two displacements

are averaged to one motion. The final AMVs are quality

controlled with comparison to nearby AMVs and NWP

information to extract synoptic-scale flow (Hayden and

Purser 1995; Holmlund 1998).

Bedka andMecikalski (2005) used the AMV algorithm

with weakened quality control constraints to generate

nongradient wind-balanced flows in the output, the so-

called mAMVs. When compared to rawinsonde and ver-

tical wind profiler observations, these mAMVs provided

weaker agreement than AMVs used for NWP assimila-

tion.However, theywere found to better depictmesoscale

flows not captured by rawinsondes, such as those along

outflow boundaries, and in zones strongly influenced by

vertical wind shear, convective outflow, and mid- to

upper-level divergence and vorticity patterns (Bedka et al.

2009). Velden et al. (2005) noted that image feature

tracking approaches can be improved with finer temporal

resolution data, and that spatially dense AMVs (like

mAMVs) can capture divergence associated with DC,

which may be related back to storm updraft intensity.
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There are a few limitations to mAMV derivation

that the reader should be aware of. Pattern matching

schemes assume that cloud motion represents actual

motion, which may not be the case with gravity waves or

with scenes containing rapid condensation or evapora-

tion of cloud droplets (Bresky et al. 2012). ‘‘Bubbling’’

common in DC may also look like horizontal motion

with sum-of-square error minimization tracking if it

occurs below the scanning time scale of GOES images

(which is less of a problem for SRS imagery than 5- to

15-min data). Navigation and registration errors, how-

ever, cause larger mAMV displacements when using

1-min imagery (e.g., a ;1 VIS pixel navigation error in

GOES-14 can result in an ;8ms21 mAMV shift), thus

images must be accurately mapped from frame to frame

(Hasler et al. 1998; Velden et al. 2005). No validation yet

exists with 1-min mAMVs; however, new mesoscale

versions of theGOES-16 derived motion winds (Bresky

et al. 2012) will be validated over scenes with DC when

operational.

In A16, the mAMV approach was applied to experi-

mental GOES-14 SRS data to derive storm-scale flow

fields that depicted rotational motion atop a supercell

storm in central Colorado. A16 noted that CTD was

much larger for severe supercell storms than for non-

supercells. The geometry of CTD and rotation matched

idealized NWP simulations of supercells; however, both

fields were sensitive to the spatial density of mAMVs

over DC and would frequently exhibit fluctuations that

were not consistent with changes in radar reflectivity

echo tops or storm severity. These fluctuations indicated

room for improvement with the flow fields derived.

Because of these artifacts, no attempt has yet beenmade

to quantitatively compare SRS-derived CTD to updraft

location, size, and intensity. This study, therefore, takes

advantage of the observable signatures in satellite, radar

data, and LMAs to examine how well the CTD fields

from an improved A16 mAMV approach (described in

section 3c) characterize kinematics in DC.

b. Remote sensing observations of convective
updrafts

Ground-based multi-Doppler radar networks have tra-

ditionally been used to characterize the three-dimensional

updraft flow structure of severe DC for many years, typi-

cally over small domains (e.g., Ray 1976; Ray et al. 1978;

Lemon and Doswell 1979; Ray et al. 1980; Knupp 1996;

Frame et al. 2009).With just a single-Doppler radar, strong

updrafts are inferred in zones of strong horizontal radar

reflectivity ZH with locally high echo tops (e.g., Starzec

et al. 2017) or bounded weak echo regions (BWER;

Lemon et al. 1978). These signatures work well when ra-

dar information is available, though large gaps in radar

coverage remain over oceanic regions and countries

without radar networks. Radar observations of updrafts in

DC have been complemented by total lightning mea-

surements. Total lightning flashes observed from LMAs

(Rison et al. 1999; Krehbiel et al. 2000) have been corre-

lated to mixed-phase updraft strength and volume

(Deierling and Petersen 2008; Schultz et al. 2015, 2017).

The spatial distribution of LMA sources sometimes re-

veals lightning ‘‘holes’’ or ‘‘rings’’ in intense storms (i.e.,

horizontal regions with few lightning sources within the

strongest updraft cores, surrounded by rings of greater

flash density; Krehbiel et al. 2000).

Without ground-based information, updraft tracking

is performed with GEO satellites that collect data over

significantly larger domains. With mature DC, updrafts

are tracked by identification of domelike protrusions

above the cumulonimbus anvil (OTs; Setvák et al. 2010;

Bedka et al. 2012; BK16). OTs are ubiquitous within DC

(Bedka et al. 2010). Other satellite signatures used re-

lated to strong updrafts, such as the ‘‘enhanced-V’’

(McCann 1983; Brunner et al. 2007) and the ‘‘cold ring’’

(Setvák et al. 2010), are typically generated by above-

anvil cirrus plumes (Wang 2003, 2007; Bedka et al. 2015;

Homeyer et al. 2017; Bedka et al. 2018).

The relationship between satellite-based OT de-

tections and updrafts comes with a few caveats. For

example, OTs that are long lived and penetrate deep

enough into the stratosphere can appear warmer (rather

than colder) than the surrounding anvil, making objec-

tive OT identification challenging with IR information

alone. Furthermore, IR temperature data may have too

coarse a spatial resolution (nominally 15 km over the

United States from GOES-14) to adequately resolve

small and/or weak OTs. Griffin et al. (2016) also show

that ;4-K TB changes can equate to a 1-km change in

cloud-top height within prior-generation 4 km (at nadir)

GOES-8–15 data. These subtle TB changes may be easy

to misinterpret by operational forecasters especially

when fixed color enhancements are used for satellite

image display, where one color may depict a range of

several kelvin. These drawbacks in subjective and ob-

jective OT identification suggest a need to combine OT

observations with other datasets for optimal updraft

location and intensity recognition. OT detection has

not yet taken advantage of the temporal evolution

and persistence of updrafts depicted by SRS GOES-14

and -16 imagery. Thus, OT detection can be susceptible

to false alarms within complex TB patterns in cold out-

flow over DC that may appear OT-like within individual

IR image snapshots. Recent advances in OT identifica-

tion include use of shape and texture information from

VIS channels to mitigate the challenges associated with

IR data (Bedka and Khlopenkov 2016, hereafter BK16).
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The temporal evolution of the SRS images and flow

derived from mAMVs, if determined physically mean-

ingful, may be useful to increase confidence in OT

identification, and help to classify which OTs are likely

to produce severe weather.

3. Data and methods

a. Data

To determine if CTD is physically meaningful, radar,

satellite, and LMA data were collected during the SRS

experiments in 2014 and 2015. ThreeGOES-14 channels

were used for mAMV derivation and OT observations:

the VIS band (0.63mm), the WV band (6.48mm), and

the surface or cloud-top temperature ‘‘window’’ IR

band (10.7mm). GOES-14 SRS data offered a ;1 km

per pixel VIS and ;4 km per pixel WV and IR spatial

resolution at nadir every minute.

Radar datasets used here include the Level-II Weather

Surveillance Radar-1988 Doppler (WSR-88D; Crum and

Alberty 1993) acquired from the National Climatic Data

Center Archive Information Request System (NCDC

AIRS, https://www.ncdc.noaa.gov) and the northern

Alabama Advanced Radar for Meteorological and Opera-

tional Research (ARMOR; Schultz et al. 2012; Knupp et al.

2014) located at the Huntsville, Alabama, airport. Two

WSR-88D systems were used: the Front Range, Colorado,

system (KFTG), and theHytop,Alabama, system (KHTX).

ARMORdatawere combinedwithKHTXtoperformdual-

Doppler three-dimensional flow derivation. For large do-

mains considered in theOTandCTDcomparison described

in section 3d, we generated a 5-min version of the Gridded

WSR-88D dataset (GridRad; Cooney et al. 2018), which

merges data from the 125 CONUS WSR-88D systems

into a 0.028 3 0.028 3 1 km longitude–latitude–altitude

grid with a distance- and time-weighted composite

scheme (Homeyer and Bowman 2017).

For total lightning information, the Colorado LMA

(COLMA; Krehbiel et al. 2012; Lang et al. 2014), west

Texas LMA (WTLMA; Bruning et al. 2011), and northern

Alabama LMA (NALMA; Koshak et al. 2004) data were

collected. Sources from LMAs within permissible spatio-

temporal range of each other were grouped into lightning

flashes using methods described by McCaul et al. (2005).

The sum of the flashes for each isolated cell was computed

over a 0.28 3 0.28 (0.38 3 0.38) latitude by longitude analysis
box centered on the cell of interest for 18 August 2014

(21 May 2014, 27 May 2015, and 4 June 2015; described

below), and the evolving trends in FR were compared to

CTD and inferred updraft characteristics. When multiple

strong updrafts were present (as for 21 May 2014), we

supplemented the FRdatawith grids of flash extent density

(FED) data. FED counts individual flashes within a 0.018 3
0.018 longitude–latitude grid box regardless of whether the

LMAsource is a flash origin point. The raw stormwide total

lightning FRs and FR trends are also analyzed using a

10-min box-car average to create a smoothed FR for

comparison with derived updraft strength, TB, and CTD.

b. Case studies

Five case studies were analyzed with dates, times, and

domains shown in Table 1. Four of these case studies,

21 May 2014, 19 May 2015, 27May 2015, and 4 June 2015,

were events with widespread DC containing a variety of

severe weather reports from the National Centers for

Environmental Information (NCEI) storm events data-

base (NCEI 2018) used in theOT andCTD comparison in

section 3d. The fifth case study, 18 August 2014, was lo-

calizedDCwithin theARMORandKHTXdual-Doppler

and NALMA domain in northern Alabama. Discrete

supercells (among other convection) were also sampled

with LMAs on 21 May 2014 (the Adams County super-

cell; a tornadic supercell in centralColorado), 27May 2015

(the Hale County supercell; a hailstorm in central Texas),

and 4 June 2015 (the Elbert County supercell; a tornadic

supercell in southern Colorado). The Adams County su-

percell is closely examined here. This storm was chosen

because it was discrete; namely, there was limited cirrus

outflow from other nearby storms to influence the mAMV

field analysis and no other nearby lightning activity to bias

our automated total lightning FR and statistics.

c. Derivation of mAMV cloud-top divergence (CTD)

The mAMV approach used here is identical to Bedka

and Mecikalski (2005) and A16, with the following ex-

ceptions: the targets are smaller (5 3 5 pixel image

boxes), and the VIS brightness count gradient threshold

(which permits the selection of a candidate in the image

as a target) is lower (set to 4 brightness counts) to yield

more mAMVs in laminar cloud scenery. For CTD der-

ivation, the point source mAMVs over a 5-min period

(six individual mAMV sets including 0-min corrected

for storm motion; see A16 section 3b) were gridded

into a flow field of u- and y-component wind using a

recursive filter (RF; Fig. 1) analysis system (Purser and

McQuigg 1982; Hayden and Purser 1995), described in

the appendix. Large objective analysis CTD artifacts

derived in A16 (which form because the original Barnes

analysis incorrectly interpolated u- and y-component

information where few mAMVs exist) are reduced with

the RF approach (e.g., see purple circle in Figs. 1c and

1d). It should be noted that derived CTD values were

still smoothed as in A16 and represent only a fraction

of the actual CTD present as a result of objective

analysis limitations. The product developed here has
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been named the super rapid scan anvil level flow

system (SRSAL).

d. OT and CTD comparison

We seek to understand how often SRSAL CTD iden-

tified an updraft in DC, how close the CTD maximum is

typically located to an updraft detected using the BK16

OT detection methods, and how the characteristics of the

OTs found near CTD maxima compared to OTs outside

notable CTD regions. If CTD is physically meaningful, it

should be larger over OTs with stronger updrafts.

The BK16 OT detection methods use a set of spatial,

statistical, spectral, and pattern recognition analyses de-

signed to mimic the human OT identification process.

Their method identifies a set of OT candidates via local-

ized cold spots embedded within convective anvils and

assigns an OT probability based on comparisons of local

IR TB with the anvil mean TB, the tropopause height and

temperature, and the regional most unstable equilibrium

level. The latter two parameters are defined using NWP or

reanalysis data. The texture produced by OTs and gravity

waves in VIS imagery is quantified through a unitless

‘‘texture rating.’’ The full derivation for VIS texture rating

is described in BK16’s section 3.2. A VIS texture of 5

typically identifies gravity waves and veryweakOTs useful

for identifying hazardous aircraft icing conditions (Yost

et al. 2018), whereas a rating.7 tends to isolate OTs with

greater vertical penetration above the anvil. Note that this

FIG. 1. The 2138 UTC 21 May 2014 GOES VIS imagery along with six sets (2133, 2134, 2135, 2136, 2137, and

2138 UTC) of derived SRS mAMVs (m s21; 2133–2137 UTC advected forward to 2138 UTC using GFS storm

motion) with (a) the background u field (m s21) prior to the final RF analysis pass, (b) the u field (m s21) after the

final RF analysis pass, (c) the derived CTD contoured every 50 3 1025 s21 with positive (negative) divergence

values shown in red (blue dash), and (d) the original A16 mAMVs and derived CTD. The purple circle in (c) and

(d) highlights an area where CTD was incorrectly interpolated when the mAMV spatial density was low.

TABLE 1. Datasets and domains used for OT to CTD product

comparison.

Case study Time duration

Domain (west lon, east

lon, south lat, north lat)

21 May 2014 1900–0000 UTC 1068W, 1018W, 37.58N, 418N
18 Aug 2014 2000–2300 UTC 88.58W, 84.58W, 33.58N, 36.58N
19 May 2015 1800–0000 UTC 1038W, 948W, 298N, 378N
27 May 2015 1800–0200 UTC 1048W, 968W, 308N, 41.58N
4 Jun 2015 1800–0300 UTC 1088W, 948W, 348N, 438N
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is a daytime-only validation, as the current SRSAL system

(and OT VIS texture rating) requires VIS data.

OT detections were tracked through time using the

Warning Decision Support System-Integrated Infor-

mation (WDSS-II) w2segmotionll tool (www.wdssii.

org; Lakshmanan et al. 2007). The settings used for

w2segmotionll here are shown in Table 2. As suggested

in BK16, an OT candidate track that exceeded 50%

probability and a VIS texture rating of 7 was considered

an OT detection. These OT tracks were then compared

to 40-dBZ echo tops within the case-study domains de-

rived using GridRad. AnOT that occurred within 15km

and 10min of a parallax corrected echo top above 7 km

in altitude was considered a ‘‘deep OT.’’ Also, OTs

within 15km and 10min of severe weather events from the

NCEI database were deemed ‘‘severe.’’ For each track, we

recorded the track maximum VIS texture rating, OT

probability, and CTD near the OT TB minimum.

This analysis also determined if an OT detection was

located near local CTD maxima. An OT track was

considered a ‘‘match’’ with the nearest CTD maximum

if the OT TB minimum was within the region with

CTD. 7.53 1024 s21 and occurred over the same anvil

cloud, also objectively identified by the BK16 algo-

rithms. While an anvil may contain multiple OTs, only

the OT nearest to a CTD maximum in that anvil was

considered a ‘‘match.’’ OTs that do not fit these criteria

were considered ‘‘nonmatches.’’ With the match rate

and location differences established, the time evolution of

CTD near updrafts was documented during the four in-

dividual storms listed above with respect to a variety of

indicators of updraft intensity and size characteristics. Two

of these storms are highlighted in the following sections.

e. The 18 August 2014 dual-Doppler analysis

A pulse-type multicell thunderstorm complex occurred

near Huntsville, Alabama, within range of the KHTX and

ARMOR dual-Doppler domain on 18 August 2014 (the

Huntsville Storm). KHTX and ARMOR were quality

controlled using the SOLO-III software (Oye et al. 1995) to

de-alias radial velocity and remove any second trip echoes

and beam artifacts. The edited radar data were mapped to

Cartesian (1kmhorizontal and vertical spacing) grids using

theNCARRadX 8-point linear interpolation scheme. This

scheme has been used in other works such as Kalina et al.

(2017) and canbe foundonline (www.ral.ucar.edu/projects/

titan/docs/radial_formats/radx.html). The Custom Editing

and Display of Reduced Information in Cartesian Space

(CEDRIC; Mohr et al. 1986) system was applied to re-

trieve three-dimensional flow with the same hydrometeor

terminal fall speed relationships and variational mass

continuity integration as in Schultz et al. (2015). The

maximum updraft speed (wmax) within the cell was tested

for correlation to observed FR,TB, andCTD.As this was a

single large pulse storm (with one clear maximum in w

observed in the time series discussed in section 4c), the

time-lagged difference between the peak values of wmax,

FR, TB, and CTD was recorded.

f. The 21 May 2014 Adams County supercell analysis

The 21 May 2014 (the Adams County, Colorado)

supercell (see A16) updraft reached altitudes above

the KFTG sampling domain, meaning multi-Doppler

variational mass continuity integration necessary to com-

pute a time series of wmax was not possible. Instead, the

COLMA total lightning FRmeasurements were used to

infer changes in the updraft size with time. This event,

unlike the Huntsville storm, contained multiple strong

inferred updraft pulses. FED is used to monitor the

spatial extent and location of surges in total lightning

and associate those pulses with any temporally related

pulses in CTD. We seek to determine if we can see a

correspondence between CTD, TB, and the inferred

updraft size consistent with the Huntsville storm, and if

CTD responds to individual updraft pulses affecting the

mixed-phase region in both storms, usually highlighted

by rapid changes in FR.

4. Results

a. OT and CTD comparison

Statistics summarizing correspondence between OTs

and CTD across the four case study events are presented

in Table 3. Of the 1182OT tracks,;70%were deep, and

48% were matches with large CTD maxima within

;13km (;3GOES-14 IR pixels at midlatitudes). There

were 566 OTs considered matches with CTD maxima,

and 523 (;92%) of these OTs were classified as deep.

Increasing the OT probability threshold to 90% (392 of

the OT events) resulted in a ;67% match rate and a

comparable ;13-km-average distance difference. From

the entire OT sample, matches had a higher-average OT

probability and VIS texture rating (Figs. 2a, b). CTD

and average OT VIS texture rating were larger for

deep OTs than nondeep OTs (Figs. 2c,d). OT tracks

without matching large CTD were also found to be

TABLE 2. Settings used in the w2segmotionll system on OT data.

Name Setting used

Scale 0 Not used

Scale 1 1 pixel above 1% OT probability

Tracking type Multiscale

Tracking radius 23 the OT size, or within 10 km

Coast frames 3 frames

Age threshold 30min
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approximately one-third of the distance length of tracks

with matching large CTD (Table 4). These statistics

suggest that the more the updraft protruded above the

mean anvil altitude based on satellite IR TB signals, the

more likely it was to be deep (i.e., an accurate updraft

detection) and have a large CTD. The statistics are

similar on a case-by-case basis, with the average distance

differences varying by only 1–2 km.

Of the tracks where OTs had matching CTD, ;25%

(139) met the severe criteria, while only ;2% (15) of

nonmatching cases were severe (Table 4). CTD and VIS

texture rating was greater for severe versus nonsevere

OTs (Figs. 2e,f). The median CTD was also larger for

severe OTs than deep OTs. Above 8 3 1024 s21 CTD,

the relative frequency of severe OTs was greater than

nonsevere OTs. Likewise, greater relative frequency of

deep OTs versus nondeep OTs was observed at and

above the lower threshold of 6 3 1024 s21 CTD. These

statistics are evidence that severe storms, which likely

have stronger updrafts than nonsevere storms, contain

more prominent and persistent OTs that produce

stronger anvil outflow than nonsevere deep OTs. We

note that the severe versus nonsevere OT CTD thresh-

old of 8 3 1024 s21 was at the 55th (40th) CTD per-

centile derived for all (deep) OT detections in this

SRSAL version.

GOES OT detections that were neither deep nor se-

vere were frequently found in regions of cold-anvil

outflow advected downstream from the main updraft

or in regions with complex TB that look like OTs in an

instantaneous view (Figs. 3a,b). Evaluation of these OTs

by the authors indicates that they are commonly found

in regions of stratiform precipitation that can feature

TBs as cold as those found in true OT regions. These

false OT patterns downstream of true OTs may form

as a result of advection of cold cloudmatter from theOT

(e.g., shedding; Homeyer et al. 2017), collocation of cold

cloud matter to the relatively warm above anvil cirrus

plumes, or even local gravity wave breaking (e.g.,

Wang 2003). OTs deemed nonmatches had low VIS

texture ratings and were frequently found around

and near above-anvil cirrus plumes. While these

may not have been false OT indications, it is noted

that, from a nowcasting and observational perspec-

tive, a much smaller proportion of these OTs were

found with severe weather compared to OTs in the

matched sample.

The CTD analyses did, however, miss about a third

of the deep OT events. These missed events were fre-

quently associated with small storms (, ;10 km) that

may have been excessively smoothed using the RF

system parameters described in the appendix. An ex-

ample is shown in Figs. 3c and 3d where a storm in

Oklahoma (which had a narrow 220-K IR area) on

27 May 2015 had distinctly weaker CTD maxima than a

tornadic storm (with a broader 220-K IR area) in Kansas

to the north, though it did produce large severe hail

reports at the ground. We find that;9.7% of the severe

OTs featured CTD below the 7.5 3 1024 s21 threshold.

For the DC events that were large enough to be ob-

served, an expected evolution occurred, where CTD

increased after DC initiation and decreased after the

DC dissipated. That evolution is documented for the

following two case studies.

b. The Huntsville storm dual-Doppler analysis

Three updraft pulses were evident in a time series

for the Huntsville storm, a weak updraft at 2000 UTC

(labeled as pulse 1 on Fig. 4, top panel), a strong up-

draft from 2019 to 2107 UTC, which then weakened at

2135 UTC (labeled as pulse 2 on Fig. 4), and a final weak

updraft at 2148UTC. This study focuses on pulse 2, which

TABLE 3. Comparison of OTs to CTD with average distance recorded between all positive detections and the nearest located

CTD maxima.

Date No. of OTs matched

No. of deep OTs

(No. matched) Total OTs Distance (km)

OT probability threshold: 50% VIS rating: 7

21 May 2014 40 84 (39) 130 12.4

19 May 2015 165 211 (146) 351 13.7

27 May 2015 198 294 (184) 405 11.4

4 Jun 2015 163 233 (154) 296 14.6

Total 566 (48%) 822 (523) 1182 Avg 5 13

OT probability threshold: 90% VIS rating: 7

21 May 2014 27 32 (24) 40 13.4

19 May 2015 62 77 (61) 82 12.5

27 May 2015 114 154 (105) 192 11.0

4 Jun 2015 58 70 (57) 78 13.2

Total 261 (67%) 333 (247) 392 Avg 5 12.5
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exhibited the characteristics of warm-season, non-

supercell DC. Cooling in the minimum IR TB is the first

signal observed as early as 2023 UTC. The

first lightning flash associated with this storm is at

2025 UTC, though the FR did not exceed 1 flashmin21

until 2041 UTC. CTD increased at 2040 UTC as the

tropopause relative IR TB approached ;5K (nearing

the tropopause in height), followed by a derived wmax

peak (;24m s21) at 2100 UTC. The total light-

ning peaked at 2113 UTC, 4min after the ;1.75-K

tropopause-relative IR TB minimum. CTD peaked at

1.08 3 1023 s21 at 2119 UTC, after the other three

updraft indicators.

CTD, when lagged by 8min, had a peak correlation of

;0.83 to smoothed total lightning FR. Unlagged CTD

showed amoderate;0.67 correlation towmax. The trend

FIG. 2. Relative frequency histograms of (a) deep and nondeep OTs with the maximumOT track CTD at the TB

minima and (b) OT average VIS texture rating, (c) matched and unmatched OTs with maximum OT track

probability and (d) OT average VIS texture rating, and (e) severe and nonsevere OTs with maximum OT track

CTD at the TB minima and (f) OT average VIS texture rating. Flags indicate where relative frequency of matched,

deep, and severe OTs were higher than the null detections.
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in total lightning (also shown on Fig. 4; top panel) very

clearly highlighted pulse 2, with an increasing trend

prior to the updraft maximum, and decreasing trend

after the updraft maximum. If we infer this signature in

total lightning FR to be indicative of mixed-phase

updraft volume variations, we can use it to identify

updrafts using only FR data when dual-Doppler in-

formation is not available.

TABLE 4. Data collected for ‘‘matched’’ OTs (with large CTD maxima) and ‘‘nonmatched’’ OTs (without large CTD maxima) including

track length and percentage with severe reports within 10min and 15 km of an OT track.

OT thresholds: 50% VIS rating: 7

Date

‘‘Match’’ OT track

length (km)

‘‘Nonmatch’’ OT track

length (km)

‘‘Match’’ OT

severe (%)

‘‘Nonmatch’’ OT

severe (%)

21 May 2014 16.66 4.54 15 1.1

19 May 2015 14.5 3.86 25.5 1.1

27 May 2015 6.24 1.94 28.8 2.9

4 Jun 2015 6.87 2.88 20.9 4.5

FIG. 3. GOES-14 imagery shown with SRSAL CTD contoured in red every 50 3 1025 s21 shown with OT

candidates and (a) VIS data for 2217 UTC 21May 2014 over central Colorado and (b) 10.7-mm IR TB. (c),(d) As in

(a),(b), but for 2220 UTC 27 May 2015 over southern Kansas and northern Oklahoma.
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c. The Adams County supercell analysis

In the Adams County, Colorado, supercell, we fre-

quently found evidence that CTD was maximized over

the locally tallest (and typically strongest) inferred

updraft. The evolution of the Adams County supercell

is shown here from a satellite (Fig. 5), radar (Fig. 6),

and FED perspective (Fig. 7). During the initiation

phase of the storm of interest, the CTDmaximum was

over a different hail-producing storm to the southwest

of the Denver International Airport (Fig. 5a; purple

arrow in Figs. 6 and 7), and cirrus was obscuring

the satellite view of the preconvection initiation cu-

mulus. After the storm reached a higher altitude than

the surrounding cirrus, the CTD with this system was

detectable in the mAMVs (Fig. 5b). As the storm

strengthened and organized, the CTD maximum moved

over the weak-echo region at 2005 UTC (Fig. 6) and

the lightning hole at 2138 UTC (Fig. 7). We noted

at 2138 UTC that, while there were additional ap-

parent updrafts highlighted by FED to the southwest,

the CTDmaximum was located over what we inferred

from FED to be the locally strongest updraft (IR TB

is similarly coldest over this region). By 2247 UTC,

a new updraft developed near the forward-flank down-

draft and CTD waned during this period. The new

storm (highlighted by red arrows in Figs. 6, 7) became

stronger than the tracked system at 2301UTC, and rapidly

grew upscale with DC to the southeast.

Five individual updraft pulses were evident in the

smoothed total lightning time series (Fig. 8, top panel).

Only three pulses were found where the correspondence

between total lightning FR trends, IR TB, and the CTD

was clear (red lines in Fig. 8, bottom panel). With these

updrafts, we observe some variance among pulses in the

timing of the response of CTD to OTs and FR peaks.

While pattern shifts in CTD maxima location or magni-

tude do not fully clarify the CTD response to updraft

pulses 2 and 4, it is apparent that CTD did not decrease

after major updraft pulses 1 and 3, as was observed with

pulse 2 in the Huntsville storm. Without a clear response

to updraft pulses 2 and 4, the correlation between FR and

CTD was very weak (;0.38) while CTD was above the

7.5 3 1024 s21 threshold (from 1945 to 2300 UTC). No

obvious relationship exists between the timing of CTD

responses to updraft pulses and tornado occurrences

(though CTD is large during most of the events). Hail

diameter appeared more responsive than tornadoes to

CTD changes, particularly ;18min after pulse 3, where

reported hail diameter increases from ;2.54 to 4.45 cm.

While a linear relationship was not observed between

FR and CTD with this storm, if we combine this case

FIG. 4. TheHuntsville storm time series of (top)NALMA total lightning 10-min boxcar smoothed

FR trend and (bottom)maximumSRSALCTDmagnitude (red line and axis), shownwith smoothed

FR (black line), unsmoothed FR (blue line), minimum tropopause relative TB (teal line), and wmax

(dashed purple line). The numbers in the flash trend indicate the increasing (decreasing) time periods

of each identified updraft pulse in red (blue). The vertical lines in the bottom panel indicate the time

of the maximum in wmax (purple), minimum TB (teal), and maximum CTD (red).
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study’s total lightning and CTDfindings with trackedHale

County and Elbert County supercells, it becomes evident

that higher total lightning FRs are observed in storms

containing higher CTD (Fig. 9). The lower FRs (from 0 to

20min21) had higher CTD variance (;0.038 s22) than

higher observed FRs (60–80min21 had a;0.015 s22 CTD

variance). This plot suggests that strong updrafts with very

high FRs have a higher likelihood of producing

observable CTD, while weaker updrafts with lower

flash rates may not always be evident at cloud top

(hence the higher variance in CTD).

5. Discussion

The guiding hypothesis is that if CTD is appropriately

derived over DC at the storm scale (,20km), then CTD

FIG. 5. The 21May 2014Adams County supercell SRSALCTDcontoured every 253 1025 s21 with positive (negative)

shown in red (blue dash) centered over the supercell of interest with one out of six sets ofmAMVs used for CTDderivation

(yellow barbs; m s21) andGOES-14 VIS imagery for (a) 1918, (b) 1946, (c) 2005, (d) 2138, (e) 2247, and (f) 2301 UTC.
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FIG. 6. The 21 May 2014 Adams County supercell 4 km constant-altitude plan position indicator views of radar

ZH fromKFTG in central Colorado centered on the supercell of interest at the same times as in Fig. 5 with parallax-

corrected SRSALCTD contoured in black every 503 1025 s21. The blue arrow highlights the supercell of interest,

and the purple and red arrows highlight additional updrafts near the supercell of interest.
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will peak spatially near objectively identifiedOTs, and the

CTD maximum will be correlated to internal and near-

storm-top updraft characteristics, such as updraft volume,

wmax, and lightning FRs. The results presented show evi-

dence that OTs occur within three IR pixels of large CTD,

though the CTDmaxima are not necessarily correlated in

time to the inferred updraft volume (based on FR) for all

cases. CTD maxima did, however, appear to be larger in

the presence of stronger updrafts, though only the locally

tallest, noncirrus obscured updrafts are observed.

FIG. 7. As in Fig. 6, but with COLMA measured FED instead.

OCTOBER 2018 APKE ET AL . 3473



Some spatial displacement between SRSAL CTD

maxima and OT locations was expected. Algorithm de-

velopment issues covered in A16 and BK16 aside, we

expect that storm-scale CTD likely occurs after (and

perhaps downstream fromwhere) anOT is observed, as it

would take time for a small ;4km OT to descend and

expand radially to limits sufficiently detectable by

SRSAL above;10km in horizontal extent. The delay in

CTD is similar to issues in radar anvil-reflectivity-based

algorithms for determining the level of maximum de-

trainment in DC, which require anvil-level hydrometeors

to develop prior to robust detection (e.g., Carletta et al.

2016; see section 4c). When coupled with storm motion,

this delay is likely to result in some enhanced CTD

maxima displacement from OTs. However, there were

times in the Adams County supercell where CTD existed

withoutOTdetections (not shown). Thus, anOTdoes not

have to be present for enhanced outflow to occur.

The inference that CTD is larger for stronger updrafts

is supported by using higher probability (and VIS tex-

ture rating) thresholds from the BK16 OT system, as a

higher percentage of more deeply protruding OTs in all

case studies were found near large CTD. The OT

probabilities andVIS texture ratings were both designed

to detect more deeply protruding updrafts, so the higher

the probability, the taller (and inferred stronger) the

updraft. We also found that OTs with higher CTD

(.8 3 1024 s21) and OT VIS texture ratings were in-

dicative of updrafts from severe weather–producing

storms. The explanation behind these results is that

larger (in diameter and amplitude) and temporally per-

sistent updrafts are more likely to produce detectable

cloud-top outflow with SRSAL, and thus OTs found

within that detectable outflow were more likely to be se-

vere. These CTD and OTVIS texture rating magnitudes

were found for storms containing any reported severe

weather occurrence and may change depending on the

differences in the degree of severity. The CTD median

value for all deep OTs was lower than that for severe

OTs, which implies that the severe OTs have, on average,

stronger inferred updrafts than OTs that are merely deep.

So, if CTD is larger for severe versus nonsevere OTs,

and higher for deep versus nondeep OTs, should there

be a linear relationship between derived CTD and up-

draft strength and volume? Deierling and Petersen

(2008) stated that the mixed-phase updraft volume ex-

hibited very strong correlations with the total lightning

FRs in storms. If we assume that CTD is correlated to

the mixed-phase updraft volume, then our findings here

would be inconsistent with the previous total lightning

FIG. 8. The 21 May 2014 Adams County supercell storm time series of (top) COLMA total

lightning 10-min boxcar smoothed FR trend, shown with smoothed FR (black line), un-

smoothed FR (blue line), maximumSRSALCTD (red line and axis), andminimum tropopause

relativeTB (olive line). The numbers in the flash trend indicate the increasing (decreasing) time

periods of each identified updraft pulse in red (blue). The vertical lines indicate the time of the

maxima in FR (blue), minima inTB (olive), andmaxima in CTD (red). Also shown are times of

hail reports (green circles) and tornado reports (red triangles) at the ground.
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FR studies. It is conceivable that processes that hinder

noninductive charging mechanisms affected the total

lightning relationship to updraft strength, for example, wet

hail growth (Emersic et al. 2011). However, the low cor-

relation betweenCTDandFR is likely in part due to errors

in the satellite flow observations. For example, SRSAL

CTD only reflects the updraft (and subsequent diverging

cloud material) that reaches the cloud top, and not nec-

essarily the internal mixed-phase updraft volume inferred

by total lightning. To some extent, then, wewonder if there

could be observational value in determining which updraft

pulses are reflected at the cloud top, andhow that relates to

cloud electrification and severe weather. Previous studies

(A16; BK16) suggest that the locally strongest updraft

would generate the largest CTD signature, highestOTVIS

texture rating, and highestOTprobability, and indeedOTs

with higher values of all three of these parameters were

found more likely to be severe than OTs without. This is

supported by the observation that the largest CTD maxi-

mum occurred nearest to the BWER and total lightning

FED hole in the Adams County supercell. Thus, applying

CTD with other metrics for nowcasting could help to

identify the strongest updrafts in a local region and adjust

severe weather probabilities accordingly.

There are a few other sources of error from the

satellite flow-derivation standpoint that may have

impacted the findings here. Currently, even with the

enhancements added to the targeting and objective

analysis approach, minimum SRSAL feature resolu-

tion is still ;10 km, thus the derived CTD magnitude

is well below the actual cloud-top outflow value, which

may well be more closely related to FR measurements.

Tests with different forms of AMV computation, such as

optical flow (Bresky and Daniels 2006; Wu et al. 2016)

may also improve gridded flow spatial resolution over

DC. We also must investigate above-anvil cirrus plumes

generated through gravity wave breaking (e.g., Wang

2003) in environments with strong upper-tropospheric–

lower-stratospheric-level storm-relative flow (Homeyer

et al. 2017) that may act to reduce derived CTD within

the ‘‘flat plane’’’ assumption used in the A16 method.

Improved cloud-height assignment algorithms with a

multilevel SRSAL system (one that performs an RF in

separate pressure and altitude layers) will likely reduce

the cloud-top cirrus impact and cloud-edge vector con-

tamination (where low-level vectors at a cumulonimbus

cloud edge are mistakenly assigned altitudes near the

cloud top).

The reader should note the sample size here is relatively

small (conforming to the availability ofDC in theGOES-14

SRS collections over theGreat Plains), and a larger sample

size with GOES-16 may yield different relationships of

CTD andOTs to severe weather occurrence. For example,

most severe wind reports originate from mesoscale con-

vective systems, which seldom exhibit large and long-lived

OTs as prominent as discrete supercells. Thus, skill scores

(e.g., probability of detection and false alarm ratio) of CTD

nowcasting systems may vary when validating a large

sample of distinct types of severe weather. CTD and OTs

before and during severeweather likely also vary by season

and region. It will also be important to analyze the impact

of the convective environment on a large sample of CTD

and OT occurrences, and how that might change the per-

formance of any developed nowcasting systems. For ex-

ample, environments with weaker stability above the

tropopause may yield deeper OTs with weaker CTD, yet

the production of severe weather at the ground may be

unchanged. Real-time NWP estimations of convective en-

vironments, used with CTD and OTs, could then improve

any new nowcasting schemes developed in the future.

6. Conclusions

A newRF approach was applied to derive storm-scale

flow fields with SRS satellite mAMVs over DC. Derived

CTD from these flow fields was compared to radar, total

lightning signatures, objectively identified OTs, and

dual-Doppler radar signatures to observe how well the

flow system characterized updraft location and intensity

FIG. 9. Box-and-whisker plots of the derived max CTD percen-

tiles in 20 flashesmin21 FR bins for the 21 May 2014 (the Adams

County supercell), 27 May 2015 (the Hale County supercell), and

4 June 2015 (the Elbert County supercell) storms. Each of the box-

and-whisker plots represents the 5th, 25th, 50th, 75th, and 95th

percentile of max CTD during which the tracked storms had a flash

rates from 0–19, 20–39, 40–59 flashesmin21, etc. The sample size

from the three storms for each bin is shown above the 95th percen-

tile. Blue lines indicate the location of the median for each FR bin.
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for storms. The primary findings of this study are as

follows:

d About 48% of automated OT detections were found

with matching large (.7.5 3 1024 s21) CTD maxima.

OT TB minima and CTD maxima locations match

closely (within ;13km) for storms observed here. OTs

withmatching largeCTDoverDCweremore frequently

associated with precipitation and severe weather at the

ground, while OTs without large CTDwere lower inOT

probability and OT VIS texture rating and shorter in

track length, suggesting that many of the latter OT de-

tections were not linked to actual updrafts. OTs with a

higher probability and higher VIS texture rating were

also more likely to be associated with large CTD.
d The sample of OTs with CTD . 8 3 1024 s21 (55th

percentile of maximum CTD derived at OT TB min-

ima) and high OT VIS texture rating had a higher

relative severe weather occurrence frequency than

OTs with CTD below this threshold.
d About 92%ofOT detections matched with large CTD

were associated with 40-dBZ echo tops above 7 km

from ground-based radar (assumed to be indicative of

DC here). SRSAL CTD, in total, identified 64% of all

deep OTs sampled here.
d A high correlation was observed between CTD and

total lightning FR for a nonsupercell single-pulse storm

(with an 8-min lagged ;0.83 correlation coefficient).
d The relationship betweenCTDand the total lightning for

the supercell storm was weaker than the nonsupercell

thunderstorm, with an observed ;0.38 correlation. Evi-

dence was shown that only the tallest (strongest) updraft

pulses were reflected at the cloud top, meaning some of

the pulses were not seen with corresponding CTD.
d Despite the complexity of the relationship between

total lightning and derived CTD for the mature super-

cell, higher FRs were generally found in periods with

larger CTD.

As shown here, CTD should not be used alone to

identify DC and internal updraft intensification (in terms

of updraft magnitude and volume). Derived CTD only

identified about two-thirds of observable DC in this sam-

ple. It was also not correlated to total lightning FR when

multiple updrafts of varyingmagnitude were present (as in

the Adams County supercell). However, the results pre-

sented in the bullets above imply that the mAMV-derived

system is outputting more than noise from the imagery.

When used with OTs, CTD can help a forecaster identify

the primary updrafts of storms. The CTD intensity may

also improve identification of severe versus nonsevereDC,

though higher CTD thresholds formatchedOTs should be

for this purpose (only 25% of matched OTs were severe

here). The late development of CTD in DC implies that

lead time for severe weather nowcasting would not be

added by using CTD over TB or total lightning FR. CTD

instead can be utilized as a separate yet complementary

interest field to overcome deficiencies present in TB cool-

ing and total lightning FR detection. For added lead time,

the CTD time trend should be used, as large increases of

CTD precede temporal maxima by several minutes.

From here, a multivariate statistical approach for

quantifying updraft characteristics of DC using SRSAL

CTD should be used, since CTD can be a function of

environmental variables. Furthermore,w is related to the

three-dimensional divergence profile, and while one di-

vergence level may be correlated to this change, it does

not capture the entire mesoscale overturning process.

Future experiments with GOES-16 can combine

parallax-corrected CTDwith local radar data for a better

implied ascent estimate using observations throughout

the entire depth of a column in DC. Multilayer cloud

environments with large vertical wind shear and incorrect

mAMVheight assignments that may introduce noise into

the flow field derivations should also be explored more

thoroughly with stereoscopic height analysis (e.g., Fujita

1982) upon the launch of newer GEO satellites such as

GOES-17. Validation tests with AMV-related observing

system simulation experiments may also ensure the cor-

rect cloud-top outflow quantification (when the actual

motion of an observed target and updraft strength of an

observed storm can be quantified).
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APPENDIX

Recursive Filter Analysis Description

The RF system is an empirical linear interpolator

with a spatially varying scale based on the nearby point-

source observation density and quality (assigned using

the weighted deviation from background flow). In one
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dimension, the RF is defined with forward smoothing

operation as

A0
i 5aA0

i21 1 (12a)A
i
, (A1)

and a backward smoothing operation as

A00
i 5aA00

i11 1 (12a)A0
i , (A2)

where i is the integer index value of a grid point to be

analyzed;A0
i andA00

i represent the forward and backward

smoothed output from the RF, respectively; Ai is the

initial background grid field, which can begin as back-

groundmodel data or a point source estimate of the initial

scalar variable and be replaced by successive analysis

fields through multiple applications of Eqs. (A1) and

(A2); and a is the RF scaling parameter, which varies as a

function of successive pass, point-source density, and data

quality, and ranges from 0, a , 1. The mAMVs height

assigned above 500-hPa altitudes are initially interpo-

lated to this grid using the adjoint of a linear interpolation

operator assuming they all exist on one flat, two-

dimensional plane. Equations (A1) and (A2) are then

applied successively in x and y dimensions with boundary

conditions to simulate infinitely long grids [following

Appendix A of Hayden and Purser (1995)].

The successive application of both Eqs. (A1) and (A2)

initially generates a heavily smoothed scalar field, and

recovers finer and finer detail with each additional

analysis pass. Varied scaling removes artifacts observed

in A16, specifically large phase and amplitude distor-

tions of an objectively analyzed scalar caused by grid

points being overly influenced by one observation, by

increasing smoothing toward background data where

point-source observed data spatial density is low. To

determine a at each successive pass, the RF system has

various subjective tunable features, which are summa-

rized in Table A1.

Using the variables defined in Table A1 with the

spectral response function in Purser and McQuigg’s

(1982) Eq. (12), it is found that the RF analysis final pass

here yielded finer wavelength flow features that could

not be identified by the original A16 Barnes im-

plementation (Fig. A1, black line). This improved re-

solving power is an important advancement that is

highly relevant to the storm-scale analyses presented in

this study. TheRF settings used in TableA1 resulted in a

maximum possible feature resolution of ;10km (the

red line in Fig. A1), though the smoothing of wave-

lengths finer than 10km can be reduced by decreasing

the final characteristic spatial-scale limit on the final

TABLE A1. Descriptions of RF parameters used in SRSAL, version 2.2, with notation fromHayden and Purser (1995), where the asterisk

means the same value is used throughout the analysis pass.

RF parameter

Initial background analyses: Analysis 1,

analysis 2 Final analysis (final pass setting)

Grid increment d ;2 km (0.028N 3 0.028W), * *

Smoothness degree f 1, 0.7 1, (0.5)

Tolerance T 99999m s21, 25m s21 25m s21

Smoothing iterations per analysis pass L 10, 3 3

No. of RF analysis passes 1, 5 5

Initial characteristic scale R0 ;111 km, ;666 km 8d

Final characteristic scale R‘ ;111 km, * 5d

Nominal scale and tolerance change rate s 0.36, * *

Background field relative weight 0, 0 0.01

Observation weight W 1, 1 1

FIG. A1. RF analysis spectral response function (D0) as a func-

tion of wavelength showing the RF system theoretical upper limit

(solid red line) and the lower boundary minimum (solid blue line)

with the range of possible smoothing values shown in gray. Also

shown is the maximum overall observed value (red vertical dash)

and the A16 original Barnes analysis spectral response function

(solid black line).
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analysis (setting R‘ in Table A1) as the vector spatial

density improves withGOES-16 imagery. The smoother

response (from larger values of a; the blue line indicated

in Fig. A1) of the RF analysis occurred at grid points

where few mAMVs existed within close (;10km) proxim-

ity (e.g., where there were no clouds to producemAMVs).

Flow fields with dense mAMV observations peaked at

a5 0.405 (represented by the red dashed line in Fig. A1).
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