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ABSTRACT

Remote sensing observations, especially those from ground-based radars,

have been used extensively to discriminate between severe and non-severe

storms. Recent upgrades to operational remote sensing networks in the United

States have provided unprecedented spatial and temporal sampling to study

such storms. These networks help forecasters subjectively identify storms

capable of producing severe weather at the ground; however, uncertainties re-

main in how to objectively identify severe thunderstorms using the same data.

Here, three large-area datasets (geostationary satellite, ground-based radar,

and ground-based lightning detection) are used over 28 recent events in an at-

tempt to objectively discriminate between severe and non-severe storms, with

an additional focus on severe storms that produce tornadoes. Among these

datasets, radar observations, specifically those at middle and upper levels (al-

titudes at and above 4 km), are shown to provide the greatest objective dis-

crimination. Physical and kinematic storm characteristics from all analyzed

datasets imply that significantly severe (≥2-in. hail and/or ≥65-kt straight-

line winds) and tornadic storms have stronger upward motion and rotation

than non-severe and less severe storms. In addition, these metrics are greatest

in tornadic storms during the time in which tornadoes occur.
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1. Introduction35

Severe and tornadic storms have been extensively studied using ground-based weather radar and36

satellite observations during the past four decades. A common goal of past research efforts has37

been enabling improvements in tornado prediction, which can save lives. Substantial efforts are38

almost always underway to improve tornado warnings, including ongoing projects like Warn-on-39

Forecast and PROBSEVERE (Stensrud et al. 2009; Cintineo et al. 2018). Despite previous efforts,40

the time from a warning being issued to a tornado occurring, commonly known as the warning41

lead time, has stayed the same from 1986-2011, averaging 18.5 min (Stensrud et al. 2013; Brooks42

and Correia Jr. 2018).43

To distinguish tornadic storms from non-tornadic storms, forecasters and researchers have com-44

monly utilized unique radar signatures at low levels (within a few kilometers of the Earth’s sur-45

face) that often precede tornadogenesis, such as hook echoes, weak echo regions, inflow notches,46

bowing line segments, and rotation visible through radial velocity couplets, which were key to47

early improvements in tornado warnings (Fujita 1958; Browning and Donaldson 1963; Lemon48

and Doswell III 1979; Przybylinski 1995). More recently, tornado warning decision making has49

increasingly leveraged the development and strength of low-level rotation, visual reports from hu-50

man spotters, and the presence of unique signatures in dual-polarization radar, such as the tornadic51

debris signature (Ryzhkov et al. 2005). For broader discrimination between severe and non-severe52

storms using radar observations, weak echo regions, mesocyclones, vertically integrated parame-53

ters based on radar reflectivity, and dual-polarization signatures have been used (Greene and Clark54

1972; Lemon et al. 1977; Amburn and Wolf 1997; Kumjian and Ryzhkov 2008). In comparison,55

remote sensing observations of the upper levels of storms (especially those from satellite) have56

been increasingly used for severe storm detection due to recent improvements in spatiotempo-57
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ral sampling (e.g., Bedka et al. 2015; Gravelle et al. 2016). Satellite-observed cloud-top features58

associated with severe storms include rapid cloud-top cooling, anomalous cloud-top flow char-59

acteristics (strong divergence and couplets of high positive and negative vorticity), overshooting60

storm tops (OTs), and the “Enhanced-V” signature and other signatures related to above-anvil cir-61

rus plumes (McCann 1983; Mecikalski and Bedka 2006; Cintineo et al. 2013; Bedka et al. 2015;62

Apke et al. 2016; Line et al. 2016; Homeyer et al. 2017). All of these features are hypothesized to63

be associated with strong upward motion within severe storms.64

Model forecasts and simulations have played a large role in understanding the processes and65

environments that lead to severe and tornadic storms (e.g., Thompson et al. 2003; Cintineo et al.66

2014; Coffer et al. 2017). The probability of all severe weather (tornadoes, hail, and straight-67

line winds) is known to increase with increasing values of convective available potential energy68

(CAPE) and vertical wind shear (typically in a layer 0-6 km AGL). For tornadic storms, additional69

environmental variables such as the significant tornado parameter, helicity, or the supercell com-70

posite parameter, have shown skill in distinguishing regions with favorable conditions for tornadic71

storm formation and where the most intense tornadic storms are likely to form (e.g., Stensrud et al.72

1997; Rasmussen and Blanchard; Thompson et al. 2003, 2012). High-resolution modeling stud-73

ies demonstrate that low-level streamwise horizontal vorticity is a key ingredient in environments74

favorable for tornadogenesis, as tilting of this vorticity into the vertical dimension helps maintain75

a strong, steady, low-level mesocyclone (e.g., Coffer et al. 2017; Orf et al. 2017). In addition to76

the tornadogenesis process, simulations of tornadic supercells have further indicated that wider77

updrafts can lead to more intense tornadoes if it is assumed that the scale and intensity of the tor-78

nadic circulation is associated with the scale and intensity of the rotating updraft at higher altitudes79

(Trapp et al. 2017), but these model results have been demonstrated to be sensitive to the design80

of the model simulations (Coffer and Markowski 2018).81
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Forecasting the potential for severe and tornadic storms hours to days in advance has largely82

been accomplished using predicted or measured properties of the near-storm environment (e.g.,83

Cintineo et al. 2013; Parker 2014). These include winds, temperature, moisture, and related vari-84

ables such as CAPE and vertical wind shear. While both individual environmental variables and85

unique combinations of different variables have proven to be useful predictors of severe storms and86

tornadoes, their utility in the warning process is limited in part by the lack of observations avail-87

able at scales necessary to resolve the near-storm variability in real time (Thompson et al. 2003;88

Parker 2014). In addition, the stochastic nature of internal storm dynamics results in considerable89

overlap in the parameter spaces occupied by tornadic and non-tornadic storms, particularly in the90

case of weak tornadoes. This overlap makes it challenging for a forecaster to determine which91

storms will and will not be tornadic within a given environment (Anderson-Frey et al. 2016).92

Operational observing systems in the United States provide measurements of storms at high spa-93

tial and temporal resolution and for many years. The Next-Generation Weather Radar (NEXRAD)94

network provides three-dimensional observations of storms at approximately 5-min increments95

(Crum and Alberty 1993). Satellite imagery from the Geostationary Operational Environmental96

Satellite (GOES) constellation provides cloud-top visible and infrared (IR) wavelength measure-97

ments of storms at intervals of 15 min or less (Menzel and Purdom 1994). The GOES-16 Advanced98

Baseline Imager provides imagery with temporal resolutions of 30 seconds to 1 min over 1000 km99

×1000 km regional domains, and every 5 min over much of North America (Schmit et al. 2017).100

Prior to GOES-16, GOES-14 was used in experimental mode to acquire 1-min resolution data,101

with a focus on severe-storm and high-impact weather analyses (Schmit et al. 2013).102

This study seeks to evaluate the utility and limitations of remote sensing observations to objec-103

tively discriminate between severe and non-severe storms using a fusion of recent high-resolution104

radar, satellite, and lightning datasets. In addition, tornadic storms are evaluated separately from105
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the remaining population of severe storms (those producing severe hail and straight-line winds)106

given their unique impacts and societal relevance. The goal of this work is to determine the value107

of modern remote sensing observations for early objective discrimination between tornadic, se-108

vere and non-severe storms. Below, novel results are presented that reveal significant differences109

in inferred upward motion and rotation between a large sample of severe and non-severe storms.110

These metrics reach a maximum in tornadic storms during the time tornadoes occur. Based on111

these results, an objective data-based approach for tornadic storm identification and short-term112

prediction is developed for performance evaluation.113

2. Data and Methods114

a. Cases115

This study examines 27 single-day severe weather events in the United States that occurred116

during 2011-2016. These cases comprise more than 7000 storms defined using NEXRAD data,117

273 of which produced tornadoes (Table 1). Severe weather days were chosen to capture a wide118

range of environmental conditions, severe weather frequencies, and tornado intensity. Nine of the119

27 days were chosen due to the availability of GOES-14 super rapid scan data (1-min intervals),120

which is necessary to calculate satellite-based cloud-top divergence (Apke et al. 2016, 2018). The121

days when GOES-14 data were available are in bold in Table 1. Additional case studies were122

added to represent a variety of severe weather events from widespread tornado outbreaks in late123

spring to wintertime mesoscale convective systems. Radar-derived storm tracks (see Section 2f)124

from all 27 cases are shown in Fig. 1. Most storms analyzed in this study are clustered in the125

central U.S., but some events extend into the eastern U.S. and the Mississippi Valley.126
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b. Radar Data127

NEXRAD Level II data (i.e., volumes in range, azimuth and elevation relative to the loca-128

tion of a radar) were retrieved from the National Centers for Environmental Information (NCEI)129

(NOAA/NWS/ROC 1991). The NEXRAD network in the contiguous United States consists of130

more than 140 WSR-88D S-band (10-11 cm wavelength) radars that observe precipitation parti-131

cles. All NEXRAD observations used in this study were obtained at a range resolution of 250132

m, an azimuthal resolution of 0.5 degrees for the lowest 3-4 elevations and 1.0 degree otherwise,133

and typically at 14 elevations per volume. Each Level II volume includes (at a minimum) the134

radar reflectivity at horizontal polarization ZH that is related to the size and/or density of cloud135

and precipitation particles in a radar volume and is in units of dBZ, and the radial velocity VR,136

a measure of the motion of cloud and precipitation particles toward and away from the radar lo-137

cation, in units of m s−1. Depending on the characteristics of the operational scanning strategy,138

the expected uncertainty in NEXRAD observations is up to 1 dB for ZH and up to 1 m s−1 for VR.139

These uncertainties can lead to even greater uncertainties in many of the derived variables outlined140

below, but such errors are typically smaller than observed differences between storm types (e.g.,141

see documented errors in observables and derived variables in OFCM 2005, 2006).142

The radar data are processed using the four-dimensional space-time merging methods described143

in Homeyer et al. (2017) and references therein, which resulted in volumes of the radar variables144

at 2-km horizontal resolution, 1-km vertical resolution, and 5-min temporal resolution over the145

entire extent of each analysis domain (see also information available at http://gridrad.org).146

Merging of VR from multiple radar volumes onto a common grid is challenging, largely due to147

the fact that VR is a measure of the motion of scatterers toward and away from the radar, such148

that any given measurement has a unique geometry and thus can vary significantly in magnitude149
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and sign compared to a measurement made at the same location from a different radar. In order150

to overcome this challenge, derivatives of VR must be merged instead. For this study, the radial151

derivative of VR (radial divergence) and the azimuthal derivative (azimuthal shear) are merged into152

multi-radar volumes, both of which are computed using centered differencing. These yield the153

approximate half-components of the divergence and rotation, which will be referred to as simply154

divergence and rotation in the remainder of the paper. Given the expected uncertainties in VR, the155

resulting uncertainties in divergence and rotation estimates should be less than 0.004 s−1, with156

uncertainties in derived rotation decreasing by more than an order of magnitude out to the farthest157

ranges observed by a radar (due to increasing azimuthal length scales; see also the discussion at158

the end of Section 3). This estimate is based on calculations using fixed range resolution, varying159

azimuthal resolution and assuming maximum error in winds: ±1 m s−1 at each bound of the160

derivative, such that the maximum ∆VR error expected is 2 m s−1. For the azimuthal derivative,161

the distance is 2∆θ for the derivative. For 0.5◦ azimuthal sampling, ∆θ increases ∼875 m per 100162

km range. For 1◦ azimuthal sampling (most elevations), ∆θ increases ∼1750 m per 100 km (i.e.,163

twice that of 0.5◦ resolution). To estimate the expected uncertainty in the azimuthal derivative, it164

is simply (2 m s−1)/(2∆θ ). For ranges beyond 30 km, the uncertainty for the azimuthal derivative165

is much less than 0.004 s−1 in all cases. For the radial (i.e., range) derivative, the uncertainty is (2166

m s−1)/(500 m) everywhere (i.e., 0.004 s−1). While it is not possible to evaluate the uncertainties167

of these and other derived variables in greater detail due to a lack of finer-resolution auxiliary data168

sets, we expect the errors in rotation and divergence in our multi-radar merged data to be reduced169

further by following several quality-control steps outlined below.170

First, since VR is prone to large errors in magnitude and sign due to aliasing (i.e., winds that171

exceed the maximum detectable VR at a given operating frequency – the Nyquist velocity – and172

become “folded”), the winds must be de-aliased prior to computing the derivatives (Doviak and173
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Zrnić 1993). De-aliasing is performed using the Python ARM Radar Toolkit (Py-ART; Helmus174

and Collis 2016). For use in this merging procedure, a Py-ART routine is invoked that does not175

require a reference atmospheric wind profile and is more computationally efficient than alternative176

approaches – dealias region based, which accomplishes de-aliasing by modeling the problem as a177

dynamic network reduction.178

Following de-aliasing, random fluctuations of VR in each azimuthal sweep (a 360-degree scan179

made at a single elevation) are further suppressed by applying a 3×3 median filter and by us-180

ing a 5-gate running-mean range filter prior to computing the radial and azimuthal derivatives (in181

that order). The derivatives (divergence and rotation) are then calculated using the quality con-182

trolled VR and merged into the large-area, multi-radar dataset following the procedure in Homeyer183

et al. (2017). In order to avoid potential artifacts within weak or non-meteorological radar echo,184

VR derivatives are only analyzed within ZH ≥ 30 dBZ in this study. Similar techniques describe185

known uncertainties that occur with VR derivatives in range and azimuthal distance (Smith and186

Elmore 2004), which can be as large as ±20% relative to a known (or prescribed) value. The187

divergence maximum above an altitude of 8 km (upper-level; example in Fig. 2A) and the conver-188

gence maximum – or divergence minimum – below 3 km (lower-level; Fig. 2B), as well as their189

column maximum values, are calculated for each storm at each time step. Maximum cyclonic190

rotation is also calculated for the lower- and upper-level altitudes (Figs. 2D & E), as well as for the191

mid-levels (4-7 km). Due to the nature of radar sampling, the low-level variables will be limited by192

the distance to the radar, and thus will have much fewer data points than the mid- and upper-level193

variables.194

Echo-top altitudes are computed for this study using multiple ZH thresholds, with the majority195

of analysis conducted using 40-dBZ echo-top altitudes (Fig. 2G). The echo-top altitudes are com-196
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puted at every horizontal grid point by finding the highest altitude where ZH exceeds the specified197

threshold, provided that ZH is also greater than the threshold in the next two lowest altitude layers.198

Velocity spectrum width, or the standard deviation of VR estimates within a radar volume, is199

also extracted from the radar data where ZH ≥ 30 dBZ (Fig. 2H). Spectrum width is influenced by200

several factors, including substantial contributions from horizontal shear in VR at low-levels and201

turbulence at any level (Doviak and Zrnić 1993). The turbulence component has been linked to up-202

draft strength within convection and is often a major contributor to spectrum width observations at203

altitudes in the middle and upper troposphere (Feist et al. 2019). The column maximum spectrum204

width at each time step of each storm is calculated for analysis in this study.205

c. Satellite Data206

GOES imagery was retrieved from University of Wisconsin-Madison Space Science and En-207

gineering Center (http://www.ssec.wisc.edu/) and NOAA (1994). GOES is primarily a208

constellation of two operational satellites that continuously monitor the weather over the United209

States: GOES-West stationed at 135◦W and GOES-East at 75◦W nadir longitudes. For the time210

period analyzed in this study, GOES-15 was operational in the West position and GOES-13 was211

operational in the East position. GOES-13 and -15 provide visible and IR imagery at 5- to 15-min212

intervals. A spare GOES satellite (GOES-14), positioned at 105◦W, has been used for experimen-213

tal super rapid scan observations in preparation for GOES-R (1-min frequency; SRSOR) during214

various periods since late summer 2012 (Schmit et al. 2013). For nine severe weather days (bolded215

in Table 1), 1-min imagery from GOES-14 is used for analysis. For the remaining severe weather216

days, imagery from GOES-13 is used. The GOES-13 and -14 Imager 0.65 µm visible wave-217

length channel has a horizontal resolution of ∼1 km at nadir, while the 10.7 µm IR channel has a218
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horizontal resolution of ∼4 km at nadir and an absolute accuracy of ≤1 K (Menzel and Purdom219

1994).220

Convective updrafts that penetrate through a thunderstorm anvil, known as overshooting tops221

or OTs, produce texture in GOES visible-channel imagery due to turbulent flow and shadowing222

induced by the updraft penetration. An algorithm to detect and quantify this texture has recently223

been developed that produces a “visible texture rating” product (Bedka and Khlopenkov 2016).224

Anvil clouds are identified using a two-step process and then a search is performed within the225

anvils to identify texture associated with penetrative updrafts. The first step in anvil detection is226

based on thresholding of GOES visible reflectance based upon an empirical model used to define227

how bright an anvil should be at a given time of day and day of year. Spatial and statistical analysis228

of the pixels that meet the day/time-dependent threshold is performed to eliminate singular pixels229

and preserve those within a broad area (greater than or equal to approximately 10 km2) of near-230

uniform reflectance characteristic of anvil clouds. Fourier-transform analysis of visible reflectance231

within small (32 pixel) windows is then performed, yielding a power spectrum for varying wave-232

lengths in a 32×32-pixel domain. Typical OT signatures and concentric gravity waves that often233

surround OTs produce the strongest signal in a ring-like pattern with a wavelength of ∼4-8 km.234

Pattern recognition is applied to the power spectrum to identify ring patterns within this wave-235

length range. The results of the pattern recognition analysis define the unitless visible texture236

rating (Fig. 2C); the most coherent ring patterns are assigned a high rating.237

Another method for convective updraft identification by GOES satellite involves objective iden-238

tification of vigorous anvil outflow in ≤1-min scanning rate information. This is achieved here239

using the Super Rapid Scan Anvil Level flow system (SRSAL; Apke et al. 2016, 2018, and ref-240

erences therein). SRSAL objectively identifies deep convection cloud-top flows with mesoscale241
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atmospheric motion vectors (mAMVs; Bedka and Mecikalski 2005), which are point-source wind242

estimates based on pattern recognition in a sequence of GOES visible images.243

SRSAL contains a cloud-top horizontal divergence (CTD; Fig. 2F) product output to a244

0.02◦×0.02◦ longitude-latitude grid. When associating SRSAL CTD with individual storms, only245

data points with final smoothing parameter (α from Hayden and Purser 1995, and Apke et al.246

2018) values less than 0.5 are considered for analysis, as points with higher values are not densely247

sampled by mAMVs. In order to mitigate sampling errors in storms obscured by cirrus at higher248

altitudes, the data points for CTD, as well as visible texture rating, are also filtered by using only249

those points with a maximum visible texture rating greater than 7, which is indicative of a convec-250

tive OT and gravity waves generated by the OT (Bedka and Khlopenkov 2016). Note that SRSAL,251

like visible texture rating, is a visible-only product as it requires the Visible channel to operate.252

The maximum CTD is calculated at each time step for each storm.253

In order to extract satellite data along the path of the radar-based storm tracks, corrections for254

parallax error (owing to the viewing geometry of the satellite) are required. Parallax error increases255

as the cloud-top altitude and distance from satellite nadir increases (Vicente et al. 2002). Methods256

typically used to correct for parallax involve converting IR cloud-top temperature to cloud-top257

altitude using a reference tropospheric temperature profile. However, these methods are prone to258

large errors for deep convective anvils because high-altitude clouds may either be: i) thermally259

adjusted to stratospheric temperatures that are warmer than the upper troposphere, or ii) be opti-260

cally thin and thus mostly transparent in IR. In this study, the merged radar observations are used261

to correct for parallax error. In particular, the ZH = 5 dBZ echo-top altitude is used as a proxy for262

cloud-top height to estimate parallax. These estimates are used to correct the coordinates of the263

satellite imagery in order to extract values coincident with the storm tracks.264
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d. Lightning Data265

The Earth Networks Total Lightning Network (ENTLN) detects lightning using pulses in verti-266

cal electric field measurements from parts of the 1 Hz to 12 MHz frequency range from over 700267

sites across the contiguous United States (Liu and Heckman 2011). Individual pulses are located in268

space and time by statistically solving over-determined electrical signal time-of-arrival equations269

using measurements from at least 5 stations. Sources close together in space and time are grouped270

into flashes, which are binned into 0.08◦×0.08◦ longitude-latitude (∼64 km2) flash density grids271

for analysis, designed to emulate the spatial resolution of data to be provided by the Geostationary272

Lightning Mapper instrument (Goodman et al. 2013). Lightning activity is correlated with intensi-273

fication of updrafts (Schultz et al. 2017). When upward motion in the mixed-phase (liquid and ice)274

region of a cloud increases, hydrometeor collision charging mechanisms typically become more275

efficient and thus, lightning flashes become more frequent (Deierling and Petersen 2008). ENTLN276

data were available for eight of the nine GOES-14 severe weather days. The maximum of the total277

lightning flash density is extracted along each storm track for analysis in this study, which consists278

of both cloud-to-ground and intracloud flash density (Fig. 2I).279

e. Tornado Warnings280

Tornado warnings from the National Weather Service are used here to provide context on which281

storms produced physical indications of possible tornadogenesis and were publicly recognized by282

warning meteorologists. NWS warnings were obtained from the online archive maintained by283

Iowa State University (Iowa Environmental Mesonet 2017). The warnings are provided as shape-284

files, with each warning consisting of a start (issuance) and end (expiration) time and coordinates285

of a polygon outlining the warned area. A warning was linked to all storm tracks that passed286

through the warning polygon during the time the warning was valid.287
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f. Storm Tracking288

Analysis of all datasets on an individual storm basis in this study is facilitated through objective289

radar-based storm tracking. In particular, individual storm tracks are computed for each severe290

weather day using an echo-top algorithm described in Homeyer et al. (2017). Local maxima in291

maps of Gaussian-smoothed echo-top altitude are identified in each 5-min radar observation and292

linked together in time if they lie within close proximity to each other (≤12.5 km). For this study,293

tracking is accomplished through time linking of ZH = 40 dBZ echo-top maxima, filtered by the294

convective echo classification output by the Storm Labeling in 3 Dimensions (SL3D) algorithm295

(Starzec et al. 2017). Tracked echo-top maxima are required to exceed an altitude of 4 km and be296

linked across 3 or more 5-min radar analyses. Radar reflectivity images of the objectively tracked297

storms were reviewed to manually identify and merge discontinuous tracks that correspond to the298

same storm. The quality-controlled storm tracks are then used to extract maximum or minimum (in299

the case of convergence and GOES IR brightness temperature) values from each dataset within a300

10-km radius of the storm location at 1-min intervals, with observations made at coarser resolution301

than 1-min interpolated linearly in space and time to the storm track location. Such interpolation302

is only performed for data with time coverage gaps less than or equal to 5 min. Severe Weather303

Data Inventory (SWDI) tornado reports from NCEI are also added to the dataset and linked to the304

nearest storm within 3 km of the tornado path (National Centers for Environmental Information305

2017).306

g. Data Analysis307

The tornadic storms are analyzed by extracting 1-min data points within a 5-min window cen-308

tered on 30 and 15 min before the first tornado, 15 and 30 min after the last tornado, and during the309

entire time period of any tornado. This allows assessment of the potential for discrimination be-310
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tween tornadic and non-tornadic storms from each variable and for providing positive lead times.311

Time periods prior to only the first tornado in each storm are evaluated (rather than those prior to312

all individual tornadoes) to best isolate unique evolutionary characteristics of tornadic storms be-313

fore they produce a tornado. Otherwise, time periods between successive tornadoes within a single314

storm may bias the perceived evolution in storm-based analyses and corresponding observational315

indicators of tornado potential. Similarly, time periods following the last tornado are analyzed to316

reveal the capacity for each variable to capture a decreasing tornado threat. The tornadic storms317

are compared to the most intense 30-min period of all tracked non-tornadic storms (i.e., any storm318

with a persistent 40-dBZ echo top exceeding 4 km) and of non-tornadic storms linked with severe319

hail or wind reports. The most intense 30-min period is defined as the ±15-min window centered320

on the storm-maximum (or minimum) value observed for each separate variable. Therefore, the321

time periods considered to be the most intense for the non-tornadic storms could differ between322

variables. The non-tornadic storms are separated into categories containing non-severe, severe323

[those containing ≥1 in. (2.54 cm) diameter hail and ≥50 kt (25.7 m s−1) wind speeds at ground324

level], and significant severe storms [those containing ≥2 in. (5.08 cm) diameter hail and ≥65 kt325

(33.4 m s−1) wind speeds at ground level]. Significant severe non-tornadic storms were not in-326

cluded in the severe non-tornadic storm category and neither severe storm category was included327

in the non-severe non-tornadic category. While many variables were analyzed during the course328

of this study, the analysis presented here focuses on variables that provided the greatest discrimi-329

natory ability from each data source. Table 2 provides a concise list of all variables analyzed and330

included in the remainder of the paper.331

The updraft strength within storms is inferred here using a kinematic approach based on diver-332

gence observations. Kinematic approaches for inferring upward motion involve vertical integration333

of the horizontal wind divergence through a column with the assumptions of an incompressible334
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or anelastic atmosphere (e.g., O’Brien 1970). Strong upper-level divergence located at altitudes335

above low-level convergence within convection (i.e., a two-layer divergence profile) implies strong336

upward motion due to the conservation of mass in the atmosphere. While the radar and satellite337

observations can only measure winds within and atop storms, respectively, the upper-level diver-338

gence alone can (with assumptions) serve as a proxy for updraft strength in deep convection.339

The utility of upper-level divergence as a proxy for updraft strength is primarily limited by vari-340

ations in the depth of analyzed storms and coarse vertical sampling. If all storms spanned the341

same depth in the atmosphere and had equivalent divergence profile shapes, differences in the342

upper-level divergence (or low-level convergence) maxima would be proportional to differences343

in vertical velocity. Since the vast majority of storms analyzed in this study reach the tropopause344

and the tropopause altitude varies by <3 km across the 27 cases analyzed, it is assumed that the345

differences in storm depth have a minor impact on the use of upper-level divergence as a proxy for346

updraft strength. In a scenario where two storms had equivalent maxima in upper-level divergence347

but differed by 3 km in depth, the inferred updraft speed for the deeper storm would be 25% larger348

than that of the shallower storm. Errors could be larger if the divergence profile shapes differed349

considerably between storms, which is not possible to adequately assess with the data used in this350

study. Single-radar estimates of divergence at high elevation angles (i.e., those obtaining mea-351

surements in the upper troposphere) contain additional error due to contributions from the vertical352

component of the wind and hydrometeor fall speeds to the measured VR, but these errors are ex-353

pected to be relatively small (or potentially helpful for diagnosing relative differences in updraft354

strength given the relationship between vertical velocity and the horizontal divergence). Others355

have had success assuming upper-level divergence is related to updraft strength, for example, in356

hail size nowcasting (e.g., Witt and Nelson 1991; Boustead 2008; Blair et al. 2011).357
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h. Performance Evaluation358

As outlined in Section 3a, an evaluation of the ability of a simple objective technique to identify359

storms capable of producing tornadoes before they occur was performed using the product of two360

radar-derived kinematic fields: divergence and rotation. To avoid being overly restrictive with an361

arbitrary altitude threshold, the column-maximum divergence is used in the product calculation.362

The rotation in the divergence-rotation product (maximum divergence multiplied with maximum363

rotation) is the maximum at upper- and mid-levels (i.e., the largest value found anywhere at and364

above 4 km). Storms that exceed a single threshold value of this product (i.e., [divergence × ro-365

tation] ≥ threshold) for a specified time period are flagged as potentially tornadic and the time at366

which the condition is met is recorded. For a predictive model, the resulting probability of detec-367

tion (POD), false alarm ratio (FAR), critical success index (CSI), and bias forecast skill metrics368

for the storm population are computed using Equations 1 through 4.369

POD =
No. correctly flagged storms

No. tornadic storms
(1)

FAR =
No. incorrectly flagged storms

No. storms flagged
(2)

CSI =
( 1

1−FAR
+

1
POD

−1
)−1

(3)

Bias =
POD

1 - FAR
(4)

A perfect forecast has a 100% POD, 0% FAR, and a CSI and bias of 1 (e.g., Roebber 2009).370

Correctly flagged storms are tornadic storms identified prior to the occurrence of the first tornado371

and incorrectly flagged storms are those flagged that never produce a tornado. Mean and median372
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lead times of the potentially-tornadic identification relative to the first occurrence of a tornado373

(hereafter the flag lead time) within each storm are also computed. Flag lead times reported in374

this study are computed only for correctly flagged storms (i.e., missed tornadic storms are not375

included in lead time calculations as having lead times of 0). Tornadic storms with 0 or negative376

lead times are considered to be missed storms, which is accounted for in the POD. For evaluation377

purposes, the first instance of a tornado warning for a storm from the NWS served as a baseline378

potentially-tornadic identification for comparison with the objective threshold exceedance method.379

Apart from the difference in storm identification method, the performance of the objective method380

and NWS tornado warnings is evaluated in the same way. Thus, calculation of lead times for these381

metrics may favor the objective approach given the fact that NWS warnings are commonly issued382

for a finite duration of 30 or 45 minutes, but the corresponding POD, FAR, and CSI calculations383

do not favor either method.384

Performance evaluations can also be made for varying storm environments, which is done here385

using the number of tornadic storms for a given day when the primary storm mode was discrete386

convection (i.e., supercells and ordinary cells). All cases for which the primary mode was multi-387

cellular convection (typically mesoscale convective systems or MCSs) are analyzed separately388

because the environments in which they occur often differ considerably from supercells (e.g.,389

see Flournoy and Coniglio 2019, and references therein). The primary modes were subjectively390

evaluated, where the mode that is dominant during the actively tornadic period was chosen. MCSs391

are the primary storm mode for five of the 27 cases (Table 1). Events for which the dominant storm392

mode was discrete convection are grouped into those having 1-5, 6-15, or 16+ tornadic storms.393
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3. Results394

The analysis of 27 severe weather day cases, based on both kinematic and physical metrics,395

shows that significant severe and tornadic storms generally have greater inferred upward motion396

and rotation than severe and non-severe non-tornadic storms (Figs. 3 & 4). The maximum diver-397

gence estimated from both radar and satellite is substantially stronger for significant severe non-398

tornadic and tornadic storms compared to that found in non-tornadic non-severe storms, especially399

when there is a tornado on the ground (Figs. 3A-3B). Severe non-tornadic storms show interme-400

diate divergence magnitudes relative to the significant severe and non-severe storm populations.401

Divergence for significant severe non-tornadic storms is similar to that observed in tornadic storms402

prior to tornadogenesis, suggesting little to no ability to distinguish between the two storm types403

before a tornado has occurred. The difference in median values between the significant severe or404

tornadic storms (especially leading up to the first tornado) and the non-tornadic storms is greater405

for the radar-estimated divergence than the satellite divergence, with clear and consistent differ-406

ences prior to first tornado occurrence. Divergence estimates from the radar and satellite sources407

here do not account for density changes in the atmosphere with height (i.e., differences in storm408

depth); thus, inferring a stronger updraft within storms containing larger divergence involves an409

incompressible atmosphere assumption. Though not shown, using an anelastic assumption (where410

base state density varies with height) and deriving mass-flux divergence instead provides consis-411

tent results with those shown here.412

Differences between the divergence estimated from ground-based radar and satellite imagery413

are likely due to both the limited information detected by satellite (i.e., at cloud top only) and the414

differences in the spatial resolution of the two datasets. It is also possible that some of the differ-415

ence can be due to the limitations of the radar-derived divergence due to the previously discussed416
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issue with the radar beam inclination. Although the number of cases differs from the satellite to417

the radar data, the cases where 1-min GOES-14 imagery was available were previously analyzed418

separately for the radar divergence with nearly identical results to the 27 cases in this study (not419

shown), indicating that the differences between radar and satellite divergence are not due to a sam-420

pling issue. Fig. 4A, which shows the maximum upper-level divergence, is nearly identical to the421

column-maximum divergence in Fig. 3A, implying that column-maximum divergence typically422

occurs at altitudes above 8 km.423

Physical metrics of strong updrafts show behavior consistent with that observed from radar and424

satellite divergence. Specifically, radar-observed 40-dBZ echo-top altitudes (the maximum alti-425

tude reached by radar-indicated precipitation of considerable size – e.g., large rain drops or ice426

particles such as hail) imply that significant severe non-tornadic and tornadic storms have stronger427

updrafts than weaker severe and non-severe non-tornadic storms (Fig. 3C). This is not a surpris-428

ing result and is due to the fact that larger precipitation particles have faster fall speeds, meaning429

stronger in-cloud vertical motion is required to loft them to higher altitudes. Identifying cloud-top430

altitudes from satellite is challenging when storms reach the tropopause (commonly the case for431

storms analyzed in this study) due to the dependence of the relationship between cloud top tem-432

perature and altitude in the stratosphere on both the resolution of the IR imager and the assumed433

environmental temperature profile, which can vary greatly in the extratropical lower stratosphere434

(e.g., Griffin et al. 2016). Alternatively, it is possible to measure the visible texture of the cloud435

top from satellite to indicate the tropopause-relative depth of OTs (Bedka and Khlopenkov 2016).436

A high visible texture rating implies a more complex texture, which is shown here to be correlated437

with stronger upward motion and higher tropopause-relative cloud tops (Fig. 5). Indeed, the visi-438

ble texture rating is also highest in the tornadic storms examined here during tornadoes, providing439

further evidence of stronger upward motion than that in non-tornadic non-severe storms (Fig. 3D).440
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Tropopause-relative IR cloud-top temperatures show similar characteristics, but less contrast. Re-441

duced contrast in IR is likely due to the 16 times poorer spatial resolution (compared to the visible)442

of the GOES imagery used in this study (Fig. A1B). As observed for divergence, the differences443

between physical characteristics of tornadic and non-tornadic storms are reduced when consider-444

ing observations for the most intense periods in significant severe non-tornadic storms (expected445

to be the most extreme non-tornadic storms).446

Three additional metrics that are related to upward motion in storms are shown to provide fur-447

ther evidence of a unique relationship between both significant severe non-tornadic and tornadic448

storms and updraft strength. First, column-maximum VR spectrum width from radar is shown (Fig.449

3E) due to its dependence on turbulence that increases as the updraft strength increases (Doviak450

and Zrnić 1993; Feist et al. 2019). Spectrum width shows similar contrast between large val-451

ues in significant severe non-tornadic and tornadic storms and much lower values in non-tornadic452

non-severe storms to that observed for column-maximum divergence, further supporting the infer-453

ence that significant severe non-tornadic and tornadic storms are characterized by stronger upward454

motion than weaker severe and non-severe non-tornadic storms.455

Second, stronger upward motion has implications for lightning activity. Data from ENTLN456

show that flash density is greatest in significant severe non-tornadic storms and similarly high457

in tornadic storms during the time a tornado is occurring (Fig. 3F). This result is comparable to458

the so-called “lightning jump” feature discussed in previous studies and linked to severe weather459

(Williams et al. 1999; Schultz et al. 2009), although this study evaluates the absolute value of flash460

density rather than how rapid the lightning activity is increasing over time. Despite the large flash461

rates observed within tornadic storms, the lightning data also show considerable overlap between462

the severe non-tornadic and tornadic storm populations prior to the first tornado, which indicates463
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that this metric is better at discriminating between severe and non-severe rather than tornadic and464

non-tornadic storms.465

Third, as an updraft intensifies within a rotating storm, stretching of vertical vortex tubes within466

provides increased vertical vorticity relative to storms with weaker updrafts (Markowski and467

Richardson 2009), which is demonstrated well in the radar observations of rotation at all alti-468

tudes (Figs. 4B, 4D, and 4F). Increased lightning activity and low-to-mid-altitude rotation are469

currently being used as variables of interest for probabilistic forecasts of tornadoes (Smith et al.470

2016). Here, of the three altitude layers of rotation analyzed, mid-level rotation (Fig. 4D) shows471

the greatest potential for discriminating between significant severe and non-severe (and tornadic472

and weakly severe or non-severe non-tornadic) storms, with similar separation between categories473

to that found for radar-derived divergence. The lack of separation in low-level rotation between474

tornadic and non-tornadic storm categories deserves some explanation here. Considering the meth-475

ods used to calculate rotation outlined in Section 2b (smoothing via 3×3 median filter and 5-gate476

running-mean and centered differencing), there are minimum scales of rotation that can be re-477

solved and retained in the merged multi-radar volumes. In addition, because the native radar data478

have higher azimuthal sampling in the lowest elevation scans, the minimum scales of rotation479

that can be resolved are smaller at low levels and larger at mid and upper levels. In most cases,480

these minimum resolvable scales are 2-3 km at low levels and 3-6 km at mid and upper levels.481

Thus, since mesocyclone diameters are commonly between 1 and 10 km (Stumpf et al. 1998), the482

smallest mesocyclones will not be detected in these data. Low-level observations here have an483

advantage in the scales (and magnitudes) of rotation that can be retained due to the enhanced res-484

olution there compared to higher altitudes, so a lack of mesocyclone detection doesn’t explain the485

differences between low-level and mid-level rotation. The minimum threshold of ZH ≥ 30 dBZ486

applied to analyses of rotation could also be a source of reduced discrimination at low levels, since487
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strong rotation can often be found within weaker echoes at such altitudes. Thus, we did evaluate488

rotation using a weaker threshold of ZH ≥ 10 dBZ, which did show some increases in low-level489

rotation for tornadic storms overall, but also an increase in the spread of rotation values for all490

storm populations (not shown).491

a. Evaluation of a Simple Objective Short-Term Tornadic Storm Forecast Product492

While the statistical evaluations in Figures 3 and 4 show that radar-derived divergence and rota-493

tion provide the largest separation between tornadic and weakly severe or non-severe non-tornadic494

storms prior to tornadogenesis, they do not evaluate the potential usefulness of the variables for495

real-time discrimination. The figures also demonstrate that tornadic and significant severe non-496

tornadic storms show little separation, but both populations are small in number compared to497

the more prevalent weakly severe and non-severe storms. Given these results and the societal498

relevance of tornadoes, an evaluation of the ability of a simple objective technique based on the499

product of radar-derived rotation and divergence to identify storms capable of producing tornadoes500

before they occur is warranted. Although low-level rotation shows significant differences between501

the non-tornadic categories and the tornadic periods, the limited number of observations available502

compared to that for mid- to upper-level rotation (see Table 3) leads to the exclusion of low-level503

rotation in the product of rotation and divergence here. To provide context for this objective thresh-504

old method for storm discrimination, performance results (i.e., the ability to identify observed505

tornadoes) are compared with the first tornado warning given to each storm by the responsible Na-506

tional Oceanic and Atmospheric Administration (NOAA) NWS forecast office, which serves as a507

metric of the first public recognition that a storm was potentially tornadic by forecasters. Note that508

the first warning is used here as a short-term forecast of a storm’s potential to become tornadic for509

context only, not to be confused with the evaluations conducted by the NWS of the performance of510
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all individual warnings, which aim to evaluate whether or not a warning encompassed the time of511

an observed tornado. The tornado warnings are linked to the storm tracks generated for this study,512

so the exact same storms are analyzed for both the radar-based and warning-based methods.513

As outlined in Section 2h, the divergence-rotation product is based on column-maximum di-514

vergence and the maximum of rotation from mid- and upper-levels. It was found that a rotation-515

divergence product threshold of 42 ·10−6 s−2 is comparable to the cumulative performance of the516

NWS warning-based potentially tornadic storm flag over all 27 severe weather days (see Figs. 4E517

and 6). This decision was arbitrarily made to facilitate direct comparison between the objective518

threshold method and the NWS warning-based method. From Fig. 6, a 5-min time period of the519

divergence-rotation product exceeding the threshold is deemed sufficient for the objective thresh-520

old technique, since the product did not appear to be greatly affected by random time variations521

(i.e., noise).522

For objective divergence-rotation thresholds ranging from 5 · 10−6 s−2 to 80 · 10−6 s−2 applied523

to data from all 27 severe weather days, the CSI largely varies between 0.1 and 0.2 (Fig. 6). In524

comparison, the CSI of the NWS warning-based method is ∼0.13 (indicated by the black circle in525

Fig. 6). The objective threshold method achieved a comparable CSI to the NWS method at a POD526

of approximately 58.3% and an FAR of approximately 85.9%, while the POD and FAR based on527

the NWS method are approximately 51.7% and 84.9%, respectively. The mean flag lead time is528

43 min using the objective threshold method, while the median flag lead time is 35 min. Similar529

performance (skill) with positive lead time by the objective method indicates that the divergence-530

rotation product provides a comparable ability to discriminate between tornadic and non-tornadic531

storms prior to tornadogenesis.532

The single-value divergence-rotation threshold calculated from the cumulative performance of533

all 27 days is applied to groupings based on the number of tornadic storms for a given case (Table534
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4). The two lower-impact groupings (1-5 and 6-15 tornadic storms) showed both higher POD535

and FAR than the overall performance, with slightly lower skill. Though the POD decreases from536

∼70% to ∼60% for the high-end days (those with 16+ tornadic storms), the FAR also decreases537

by a considerable amount, which in turn increases the skill of the objective method to 0.19. The538

performance decreases for the objective threshold method when the dominant storm mode is an539

MCS. Namely, the lowest POD and highest FAR values are found in these cases, with the objective540

threshold method showing the poorest performance. However, the median flag lead times from541

the objective threshold method are still the same as the overall median flag lead times from the542

27 cases. These results reveal that the ability of the objective threshold method to discriminate543

between tornadic and non-tornadic storms is greatest in discrete cases (i.e., supercell storms) and544

the lead time of discrimination is relatively insensitive to the variation in event type.545

In order to illustrate the spatial appearance of the objective threshold evaluation, maps of in-546

stantaneous fields at 20-min intervals from the 31 May 2013 event are shown in Fig. 7. Areas547

exceeding the single-value divergence-rotation threshold are shown in purple in each map. Storms548

1 and 4 exceed the threshold for extended periods of time and are each responsible for producing549

several tornadoes (times indicated in each map), while storms 2 and 3 briefly exceeded the single-550

value threshold and never or only once produced a tornado, respectively. All four storms were551

tornado warned by the NWS for some time during their life cycles. The southern storm (labeled552

1) produced an EF3 tornado near El Reno, OK at 23:03 UTC, as well as an EF0 tornado shortly553

prior to the EF3 tornado. The first exceedance of the divergence-rotation product for storm 1 was554

observed at 21:50 UTC and the divergence-rotation product exceeded the threshold value over a555

larger area for storm 1 than the remaining storms, both prior to and especially during the EF3556

tornado.557
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4. Summary and Discussion558

This study employed radar, satellite, and lightning observations from a large dataset of more than559

7000 storms to examine the ability of modern, high-resolution remote sensing data to objectively560

discriminate between severe and non-severe storms, with an additional focus on severe storms that561

produce tornadoes. It was found that radar-observed/derived physical and kinematic characteristics562

routinely enable discrimination between significant severe or tornadic and non-severe non-tornadic563

storms, with indications from all datasets that inferred upward motion is strongest and rotation is564

fastest in tornadic storms during the occurrence of a tornado (see Figs. 3 & 4). Significant severe565

non-tornadic storms were found to broadly overlap with tornadic storms in most observations, but566

the size of the significant severe non-tornadic population is relatively small. While the tornadic and567

non-tornadic discrimination results are broadly consistent in both radar and satellite-derived flow568

observations, larger differences were seen between the storm categories in the radar observations.569

The separation between the tornadic and non-tornadic storm characteristics was found to be large570

enough such that a simple objective threshold method based on the product of radar-derived storm571

divergence and rotation was able to provide early indication of potentially tornadic storms with572

comparable performance to indications based on NWS tornado warnings (see Fig. 6).573

Previous studies have shown somewhat similar separation between storm categories using en-574

vironmental measurements from numerical model analyses and forecasts, such as the significant575

tornado parameter (e.g., Thompson et al. 2003). These studies typically isolate environments576

based on the most intense storm within close proximity to the model grid point. However, as out-577

lined in Section 1, it is common to find both tornadic and non-tornadic (or severe and non-severe)578

storms within very similar environments, which makes it challenging to use these metrics for ob-579

jective storm discrimination. Analysis of such environmental variables was conducted during the580
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course of this research, but greater overlap, and thus weaker discrimination, between storm cate-581

gories was found compared to that provided by the radar-observed/derived physical and kinematic582

characteristics (not shown).583

With respect to tornadic versus non-tornadic storms, the results of this study agree with the cur-584

rent understanding of the three-step process for tornadogenesis within supercells (Markowski and585

Richardson 2009; Davies-Jones 2015). Namely, the first step in a storm’s evolution to become586

tornadic is the development of a strong mid-level circulation, which is found routinely in the radar587

observations at long lead times to tornadogenesis (see Fig. 4D). The second step for a tornadic588

storm is the development of a strong near-surface circulation as a result of processes occurring as589

air descends through the low-level outflow. The third and final step to becoming a tornadic storm590

is having this near-surface rotation come into alignment with in-storm perturbation pressure gra-591

dients associated with rotation aloft, that lift the air and contract it to tornado strength (Markowski592

and Richardson 2014). The maximum values observed in almost all physical and kinematic met-593

rics evaluated here being associated with time periods during observed tornadoes is evidence of594

the extreme and deep rotating updrafts associated with tornadogenesis in the conceptual model.595

Given the extensive knowledge base that exists for severe, non-severe, tornadic and non-tornadic596

storms and the discussion given in the previous paragraph, it is not surprising to find that, on597

average, significant severe non-tornadic and tornadic storms have stronger inferred updrafts and598

greater rotation than non-severe non-tornadic storms. These findings are in agreement with a599

similar argument for tornadic storms that has recently been made for an association between the600

strength of a storm’s mesocyclone and the width of the updraft, which Trapp et al. (2017) tied to601

tornado strength based on numerical simulations of tornadic storms. As shown in the example602

maps of the divergence-rotation product (Fig. 7), the storm responsible for the 2013 El Reno, OK603

EF3-tornado was associated with a higher area of divergence-rotation threshold exceedance than604
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nearby storms with weaker tornadoes, which may be an indication of a broader updraft within the605

El Reno storm. Future studies should investigate the relationship between metrics of updraft width606

and tornado strength in observations.607

One caveat of this study is that only 27 events from a period spanning 5 years were evaluated,608

with most events occurring during the April-June time period. Thus, to demonstrate that our609

methods for case selection were not inherently biased, an analysis based on 22 additional severe610

weather days that were randomly selected from a single year (2011) is included in the Appendix.611

The results from these cases are generally consistent with that presented above and further support612

the argument that our case selection for the events analyzed throughout the paper was not biased.613

Another caveat of this analysis is the focus on single-polarization radar variables. While several614

dual-polarization variable extrema were investigated during the study summarized here, none of615

this analysis yielded statistically significant differences between severe categories and was there-616

fore not reported. A lack of significant differences could be due to insufficient diagnosis of dual-617

polarization signatures associated with tornadoes using extrema alone. It is also possible these618

signatures are suffiecently small in scale such that they are smoothed out in the gridded radar619

dataset. Nevertheless, dual-polarization radar observations and their utility for severe and tornadic620

storm discrimination should be investigated further in future work.621

In the tornado warning process, the NWS forecaster faces two primary challenges: timely iden-622

tification of tornadic storms, and production of spatially concise warnings that sufficiently identify623

locations likely to be affected by a tornado. The objective system developed here can only help624

with the former, as the physical connection between strong divergence near the storm-top and625

the eventual development of rotation near the surface is unknown and is required to confirm the626

eventual presence and approximate location of a tornado. Furthermore, this study has shown that627

while weakly severe and non-severe non-tornadic storms are often considerably different than tor-628
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nadic storms in radar and satellite observations, significant severe non-tornadic storms (those most629

likely to be non-tornadic supercells) do not differ considerably from tornadic storms prior to tor-630

nadogenesis. Thus, additional work is required to evaluate the utility of the physical and kinematic631

radar observations (especially those at middle and upper levels) for the tornado warning decision632

making process. Furthermore, while the objective method of potentially tornadic storm detection633

using the divergence-rotation product was found to perform at a skill similar to NWS warnings, the634

true value of this metric for the warning decision making process should be evaluated in greater635

detail in future studies. Namely, this work would benefit from increasing the number of cases636

to reduce uncertainty and include greater representation of observed seasonality and convective637

mode. Observing system simulation experiments (commonly referred to as OSSEs), which have638

been used to estimate radar multi-Doppler wind retrieval uncertainties (e.g., Potvin et al. 2012),639

may also be helpful for improving understanding of the limitations of and uncertainties in the640

divergence-rotation product.641

One potential barrier to implementing the divergence-rotation product evaluated here in an op-642

erational setting is the necessary step of dealiasing radial velocity fields, which is the most crucial643

and time consuming element of the process. However, dealiasing is commonly executed in real-644

time within the software used by forecasters. In addition, while the divergence-rotation product645

was calculated from multi-radar composites, it could easily be implemented using single-radar ob-646

servations. If similar methods to this study are used for computing divergence and rotation, differ-647

ences between the magnitude of the product in single-radar fields and the multi-radar composites648

are expected to be minimal, but it is required to evaluate the product from multiple neighboring649

radars to achieve similar vertical sampling. One aspect that was not investigated in this study is650

the development of a variable divergence-rotation threshold for the objective method to account651

for potentially relevant factors such as seasonality, location, or storm mode. It is likely that the652
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threshold found here is not “one size fits all”, but will vary based on such factors as evident by653

the variation in performance between case types (Table 4). Again, further research is needed to654

examine the best way to utilize these results in an operational setting.655

In conclusion, these findings provide an opportunity for improving the early recognition of sig-656

nificant severe and potentially tornadic storms from modern radar, satellite, and lightning obser-657

vations. Increases in the spatial and temporal resolution of visible and IR satellite imagery now658

available following the transition of GOES-16 to operations in January 2018 will likely demon-659

strate improved capability to infer updraft intensity in the future. There are ongoing efforts to in-660

vestigate these metrics further using machine learning techniques, which will likely yield a greater661

performance than the simple objective threshold technique introduced here.662
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a. Tropopause-Relative Infrared Brightness Temperature675

Since IR brightness temperatures serve as a proxy for cloud top height and can help to indicate676

the depth of overshooting tops (and thus, the strength of upward motion within convection), we did677

evaluate the potential of brightness temperatures to discriminate between severe and non-severe678

(and tornadic and non-tornadic) storms. IR brightness temperature did not show an ability to679

discriminate between severe and non-severe and tornadic and non-tornadic storms. A storm with680

a cold cloud top does not indicate that the storm will necessarily be severe or tornadic. Fig. A1A681

shows storms from the same example as in Fig. 2. The northeastern-most storm was producing a682

tornado at the time that map was valid for, while the other storm with a cold cloud top (deep blue683

shading) on the KS-NE border only produced a few ∼1-inch hail reports and a 52-kt wind report.684

One of the southern storms also produced a tornado at a later time, but its minimum brightness685

temperature was only 3 K colder than at this time, which was considerably warmer than the KS-686

NE border storm that never produced a tornado. Note also that anvil regions well removed from687

precipitation echoes are comparably cold to the strong convective cores, which complicates the688

use of IR temperature thresholding for severe storm discrimination.689

The minimum IR brightness temperature from GOES within a storm is calculated and compared690

with the temperature at the tropopause in order to investigate the minimum tropopause-relative691

temperature of the cloud tops. Generally, if the tropopause-relative cloud-top temperature is neg-692

ative, the storm is penetrating into the stratosphere.693

The tropopause temperature was extracted from Rapid Update Cycle (RUC) or Rapid Refresh694

(RAP) hourly output (Benjamin et al. 2004, 2016). The RUC/RAP models have a horizontal695

resolution of 13 km and 50-51 vertical levels, and were retrieved from the National Centers for696

Environmental Prediction (NCEP; National Oceanic and Atmospheric Administration, Earth Sys-697
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tem Research Laboratory 2012). The temperatures from RAP/RUC were linearly interpolated to698

the radar-based storm tracks in space and time for analysis.699

Although there is considerable overlap between the categories for the minimum IR brightness700

temperature, it is worth noting that the 5th percentile of the tornadic category is much colder than701

the other categories (Fig. A1B). This implies that tornadoes seldom occur when cloud tops are702

warm relative to the tropopause, which differs from the severe and significant severe non-tornadic703

categories. While GOES-13/14 data cannot resolve the coldest temperatures due to its spatial704

resolution, the data indicate that cloud tops are relatively cold for tornadic storms on average.705

After updraft intensification while the storm is tornadic, there is a lot of cold outflow generated,706

resulting in a smaller range of values after the tornado dissipates.707

b. Additional Cases708

An analysis of 22 randomly selected severe weather cases from 2011 (Table A1) supports the709

general result from this study, though the upper-level variables show less separation between the710

most intense period of the non-tornadic significant severe storms and the tornadic storms (Fig.711

A2). These cases were tornado days that were randomly picked throughout the year. At least one712

case from each month of the year is included to account for potential seasonality in tornadic and713

non-tornadic storm characteristics. This analysis suggests that there is an important seasonality to714

the divergence-rotation threshold, as the separation between storm populations remains similar to715

the results presented in the main text, but all the boxes are shifted downward (i.e., magnitudes of716

each metric are smaller).717
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TABLE 1. Dates, number of storms, number of tornadic storms, number of tornadoes, dominant storm mode

(discrete or mesoscale convective system), and the longitude-latitude coordinates of the analysis domain for the

27 severe weather days analyzed in this study. Dates in bold represent days where GOES-14 and ENTLN data

were available, with one exception (ENTLN data were not obtained for the 4 June 2015 case).

922

923

924

925

No. Tornadic Analysis Domain Coordinates

No. Storms (No. Dominant [lon0, lat0, lon1, lat1]

Date (No. Severe) Tornadoes) storm mode (◦W and ◦N)

22 May 2011 469 (68) 21 (59) Discrete [95.5, 35.5, 87.0, 46.5]

24 May 2011 450 (88) 24 (64) Discrete [101.5, 32.0, 92.5, 39.0]

9 April 2012 30 (4) 1 (6) Discrete [101.0, 33.5, 95.0, 37.5]

13 April 2012 97 (6) 3 (14) Discrete [100.5, 34.5, 95.0, 37.0]

14 April 2012 313 (30) 23 (96) Discrete [101.0, 36.0, 95.5, 41.5]

20 May 2013 246 (67) 16 (35) Discrete [99.0, 31.5, 93.0, 40.0]

31 May 2013 391 (63) 14 (36) Discrete [99.0, 34.5, 87.0, 40.5]

12 June 2013 555 (126) 10 (21) MCS [96.0, 38.0, 80.0, 45.0]

27 April 2014 223 (57) 8 (21) Discrete [99.0, 34.0, 91.5, 42.0]

10 May 2014 112 (40) 2 (5) Discrete [99.0, 36.0, 90.0, 43.0]

11 May 2014 330 (63) 10 (41) Discrete [102.0, 36.0, 92.0, 44.5]

21 May 2014 54 (10) 2 (5) Discrete [106.0, 37.5, 101.0, 41.0]

16 June 2014 406 (66) 10 (40) Discrete [100.0, 41.0, 89.0, 44.0]

17 June 2014 155 (22) 7 (16) Discrete [106.0, 41.5, 94.5, 48.0]

18 June 2014 79 (8) 5 (13) Discrete [100.0, 43.5, 98.0, 46.5]

13 October 2014 707 (80) 17 (24) MCS [95.5, 29.5, 84.5, 40.5]

6 May 2015 202 (53) 23 (52) Discrete [100.0, 32.5, 95.5, 41.5]

19 May 2015 329 (32) 13 (36) Discrete [103.0, 29.0, 94.0, 37.0]

24 May 2015 123 (16) 1 (10) MCS [105.0, 36.0, 97.0, 41.0]

25 May 2015 669 (64) 18 (28) MCS [105.0, 25.0, 89.0, 41.0]

27 May 2015 387 (48) 8 (18) Discrete [104.0, 29.5, 96.0, 41.5]

4 June 2015 290 (42) 3 (23) Discrete [108.0, 34.0, 93.0, 43.0]

23 December 2015 137 (34) 7 (26) MCS [92.5, 33.5, 84.0, 42.0]

15 April 2016 160 (28) 4 (12) Discrete [104.0, 34.5, 99.0, 40.5]

9 May 2016 199 (64) 10 (26) Discrete [100.0, 33.0, 94.0, 41.5]

24 May 2016 150 (35) 11 (44) Discrete [104.0, 35.5, 97.0, 41.0]

25 May 2016 17 (6) 2 (6) Discrete [99.5, 35.5, 95.0, 40.0]

Total 7280 (978) 273 (777) – –
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TABLE 2. All variables presented in this study, categorized by their source and type (physical or kinematic).

Radar Satellite Lightning

Kinematic Rotation Extrema Cloud Top Vorticity Extrema N/A

Divergence Extrema Cloud Top Divergence Extrema

Velocity Spectrum Width Extrema

Physical Echo Top Altitude (at a 40-dBZ ZH threshold) Visible Texture Rating Total Flash Density
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TABLE 3. The number of 1-min observations contributing to box plots in this study.

Non-tornadic Non-tornadic 30 min before 15 min before During 15 min after 30 min after

Figure Non-tornadic severe significant severe first tornado first tornado tornado last tornado last tornado

3A 125615 16373 3256 961 1164 6207 1053 817

3B 15307 2215 558 112 138 541 93 54

3C 128713 16585 3318 961 1164 6210 1058 821

3D 21372 3221 735 117 232 977 168 119

3E 125671 16355 3281 961 1164 6210 1053 821

3F 36212 5284 1177 185 226 844 206 130

4A 122414 16260 3272 955 1164 6135 1041 796

4B 120454 15739 3287 953 1159 6134 1040 792

4C 96926 13586 2672 825 983 5243 863 672

4D 121654 16056 3220 951 1149 6123 1049 817

4E 121151 16143 3338 953 1159 6134 1040 792

4F 44429 6710 1431 378 465 3243 424 316

A1B 24699 2658 608 223 269 1086 231 170

A2A 231963 15850 2648 275 345 878 260 205

A2B 103295 13164 2289 224 290 745 195 158

A2C 220861 15224 2589 255 331 844 253 195

A2D 231293 15595 2653 275 345 878 260 205

A2E 232414 15790 2644 275 345 878 260 205

A2F 220677 15282 2588 260 331 845 253 195

A2G 238546 16080 2648 275 345 878 260 205

A2H 229796 15515 2648 275 345 878 260 205
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TABLE 4. Values of the performance metrics for the rotation-divergence product using a threshold of 42 ·

10−6 s−2 [where NWS skill (CSI) was matched using data from all 27 cases]. Here, values are shown for the

performance when the threshold was used for all 27 cases, cases dominated by MCSs, and cases grouped by the

number of tornadic storms that occurred.

926

927

928

929

Mean flag Median flag

POD (%) FAR (%) lead time (min) lead time (min)

27 cases 58.30 85.85 43.0 35

MCS 32.00 92.52 38.4 35

1-5 tornadic storms 69.57 87.30 54.4 47

6-15 tornadic storms 69.23 87.20 39.5 34

≥ 16 tornadic storms 58.88 77.90 44.8 34
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Table A1. Similar to Table 1. Dates, number of storms, number of tornadic storms, number of tornadoes,

dominant storm mode (discrete or mesoscale convective system), and the longitude-latitude coordinates of the

analysis domain for the randomly selected 2011 severe weather days.

930

931

932

No. Tornadic Analysis Domain Coordinates

No. Storms (No. Dominant [lon0, lat0, lon1, lat1]

Date (No. Severe) Tornadoes) storm mode (◦W and ◦N)

25 January 2011 665 (18) 6 (7) MCS [ 84.0, 25.0, 80.0, 31.0]

24 February 2011 547 (97) 10 (19) Discrete [ 95.0, 31.0, 82.0, 38.5]

5 March 2011 501 (8) 4 (7) Discrete [ 96.0, 28.5, 86.5, 34.5]

19 March 2011 102 (10) 2 (2) Discrete [103.5, 32.0, 78.5, 35.5]

29 March 2011 1101 (45) 2 (3) Discrete [ 94.5, 28.5, 84.5, 36.5]

09 April 2011 296 (34) 7 (23) Discrete [ 98.5, 40.5, 90.0, 45.5]

21 April 2011 113 (7) 3 (5) Discrete [104.5, 28.5, 96.5, 35.5]

26 May 2011 1415 (192) 12 (14) MCS [ 91.5, 29.5, 74.0, 43.0]

29 May 2011 346 (47) 3 (4) MCS [ 94.0, 40.0, 81.5, 45.5]

1 June 2011 351 (48) 4 (7) Discrete [ 80.5, 39.5, 67.0, 46.5]

10 June 2011 1016 (74) 1 (1) Discrete [ 97.0, 37.0, 80.5, 42.0]

12 June 2011 557 (41) 9 (12) Discrete [108.0, 38.0, 74.5, 47.5]

27 June 2011 216 (8) 2 (2) Discrete [ 85.5, 36.5, 79.5, 42.0]

29 June 2011 199 (12) 2 (2) Discrete [117.0, 43.0, 104.0, 49.0]

17 July 2011 241 (17) 4 (8) Discrete [104.0, 44.0, 93.5, 49.0]

26 July 2011 1416 (50) 4 (7) Discrete [104.0, 40.0, 69.5, 47.0]

2 August 2011 212 (1) 1 (1) Discrete [ 84.5, 25.0, 80.0, 30.5]

17 September 2011 488 (15) 1 (3) Discrete [102.5, 31.5, 94.0, 37.5]

7 October 2011 425 (21) 3 (4) Discrete [104.0, 34.0, 95.5, 43.0]

7 November 2011 552 (24) 2 (15) MCS [103.0, 32.0, 92.5, 38.0]

21 December 2011 101 (1) 1 (1) MCS [ 89.0, 30.0, 82.5, 35.5]

22 December 2011 632 (21) 10 (18) MCS [ 93.5, 29.0, 83.0, 35.0]

Total 11492 (791) 93 (165) – –

933
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Fig. A1. Panel A shows an example map of the IR brightness temperature for the same case as in Fig.979

2. Panel B depicts box plots for minimum tropopause-relative IR brightness temperature980

similar to those in Fig. 3. . . . . . . . . . . . . . . . . . . . 57981

Fig. A2. Similar to Fig. 3. Box plots for the 22 randomly selected cases from 2011. . . . . . . 58982
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FIG. 1. Storm tracks of at least 30 min in length from all 27 cases. Variation in color is arbitrary and meant to
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983

984

50
Accepted for publication in Journal of Applied Meteorology and Climatology.   DOI 10.1175/JAMC-D-18-0241.1.



B. Radar low-level divergence (•10–3 s–1)

H. Radar velocity spectrum width (m s–1)

E. Radar low-level rotation (•10–3 s–1)

0

−1

−2

−3

−4

−5

0.0

1.6

4.8

6.4

8.0

A. Radar upper-level divergence (•10–3 s–1)

G. Radar echo-top altitude (km)

C. Satellite visible texture rating

F. Satellite divergence (•10–4 s–1)

I. ENTLN total lightning flash density (min–1 64 km–2)

0

10

20

30

40

259.0° 260.4° 261.8° 263.1° 264.5°
Longitude

37.0°

38.4°

39.8°

41.1°

42.5°

La
tit

ud
e

37.0°

38.4°

39.8°

41.1°

42.5°

La
tit

ud
e

37.0°

38.4°

39.8°

41.1°

42.5°

La
tit

ud
e

D. Radar upper-level rotation (•10–3 s–1)

3.2

0.0

1.6

4.8

6.4

8.0

3.2

0.0

1.6

4.8

6.4

8.0

3.2

5

7

11

13

15

9

0

3

9

12

15

6

259.0° 260.4° 261.8° 263.1° 264.5°
Longitude

259.0° 260.4° 261.8° 263.1° 264.5°
Longitude

0

10

20

30

40

NE

KS

IA
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FIG. 3. Box plots for kinematic and physical metrics of upward motion derived from radar, satellite, and

lightning data. The notched box-and-whiskers show the 5th, 25th, 50th, 75th, and 95th percentiles of each metric

for all severe weather days for which data are available. Notches in the boxes emanating from the median values

represent the 95% confidence interval for the median values. When the notches of different boxes within the

same subplot do not overlap, the medians are taken to be significantly different (Krzywinski and Altman 2014).

The three leftmost boxes in each subplot show distributions based on the 30-min periods around the maximum

of a given variable for all non-tornadic storms (NT), severe non-tornadic storms (SNT), and significant severe

non-tornadic storms (SSNT). The five remaining boxes show distributions for tornadic storms at 30 and 15 min

prior to the first tornado (30BT and 15BT), during the lifecycle of all tornadoes (DT), and 15 and 30 min after

the last tornado (15AT and 30AT). The number of observations contributing to each box in every figure, as well

as the values for the 5 percentiles for each box, can be found in the supplemental tables.
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the threshold used for the the objective tornadic storm identification method evaluated in Section 3a.
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FIG. 7. Example maps of the radar divergence-rotation product valid 31 May 2013 in Oklahoma and Kansas

in the time window from 22:20 UTC to 00:00 UTC on 1 June 2013 (at 20-min intervals). All values above

the threshold of 42 · 10−6 s−2 are colored purple, values between 25 and 42 ·10−6 s−2 are shown in pink, and

any values below 25 · 10−6 s−2 are colored blue. Storms of interest are labeled in the different panels and

tornado reports (and the state counties in which they occurred) are noted in each map. 15- and 45-dBZ 0-5 km

column-maximum reflectivity values are contoured in black (increasing thickness for increasing reflectivity).
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Fig. A1. Panel A shows an example map of the IR brightness temperature for the same case as in Fig. 2. Panel

B depicts box plots for minimum tropopause-relative IR brightness temperature similar to those in Fig. 3.
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Fig. A2. Similar to Fig. 3. Box plots for the 22 randomly selected cases from 2011.
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