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ABSTRACT

7 Remote sensing observations, especially those from ground-based radars,
s have been used extensively to discriminate between severe and non-severe
1 storms. Recent upgrades to operational remote sensing networks in the United
» States have provided unprecedented spatial and temporal sampling to study
= such storms. These networks help forecasters subjectively identify storms
» capable of producing severe weather at the ground; however, uncertainties re-
s main in how to objectively identify severe thunderstorms using the same data.
» Here, three large-area datasets (geostationary satellite, ground-based radar,
» and ground-based lightning detection) are used over 28 recent events in an at-
s tempt to objectively discriminate between severe and non-severe storms, with
= an additional focus on severe storms that produce tornadoes. Among these
s datasets, radar observations, specifically those at middle and upper levels (al-
» titudes at and above 4 km), are shown to provide the greatest objective dis-
» crimination. Physical and kinematic storm characteristics from all analyzed
o datasets imply that significantly severe (>2-in. hail and/or >65-kt straight-
» line winds) and tornadic storms have stronger upward motion and rotation
s than non-severe and less severe storms. In addition, these metrics are greatest

» 1n tornadic storms during the time in which tornadoes occur.
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s 1. Introduction

» Severe and tornadic storms have been extensively studied using ground-based weather radar and
« satellite observations during the past four decades. A common goal of past research efforts has
» been enabling improvements in tornado prediction, which can save lives. Substantial efforts are
» almost always underway to improve tornado warnings, including ongoing projects like Warn-on-
» Forecast and PROBSEVERE (Stensrud et al. 2009; Cintineo et al. 2018). Despite previous efforts,
« the time from a warning being issued to a tornado occurring, commonly known as the warning
~ lead time, has stayed the same from 1986-2011, averaging 18.5 min (Stensrud et al. 2013; Brooks
» and Correia Jr. 2018).

“ To distinguish tornadic storms from non-tornadic storms, forecasters and researchers have com-
« monly utilized unique radar signatures at low levels (within a few kilometers of the Earth’s sur-
« face) that often precede tornadogenesis, such as hook echoes, weak echo regions, inflow notches,
~ bowing line segments, and rotation visible through radial velocity couplets, which were key to
« early improvements in tornado warnings (Fujita 1958; Browning and Donaldson 1963; Lemon
» and Doswell III 1979; Przybylinski 1995). More recently, tornado warning decision making has
o 1increasingly leveraged the development and strength of low-level rotation, visual reports from hu-
s man spotters, and the presence of unique signatures in dual-polarization radar, such as the tornadic
= debris signature (Ryzhkov et al. 2005). For broader discrimination between severe and non-severe
s storms using radar observations, weak echo regions, mesocyclones, vertically integrated parame-
s« ters based on radar reflectivity, and dual-polarization signatures have been used (Greene and Clark
s 1972; Lemon et al. 1977; Amburn and Wolf 1997; Kumjian and Ryzhkov 2008). In comparison,
s remote sensing observations of the upper levels of storms (especially those from satellite) have

s been increasingly used for severe storm detection due to recent improvements in spatiotempo-
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s ral sampling (e.g., Bedka et al. 2015; Gravelle et al. 2016). Satellite-observed cloud-top features
s associated with severe storms include rapid cloud-top cooling, anomalous cloud-top flow char-
o acteristics (strong divergence and couplets of high positive and negative vorticity), overshooting
& storm tops (OTs), and the “Enhanced-V” signature and other signatures related to above-anvil cir-
e rus plumes (McCann 1983; Mecikalski and Bedka 2006; Cintineo et al. 2013; Bedka et al. 2015;
e Apke et al. 2016; Line et al. 2016; Homeyer et al. 2017). All of these features are hypothesized to
« be associated with strong upward motion within severe storms.

e  Model forecasts and simulations have played a large role in understanding the processes and
e environments that lead to severe and tornadic storms (e.g., Thompson et al. 2003; Cintineo et al.
e 2014; Coffer et al. 2017). The probability of all severe weather (tornadoes, hail, and straight-
e line winds) is known to increase with increasing values of convective available potential energy
& (CAPE) and vertical wind shear (typically in a layer 0-6 km AGL). For tornadic storms, additional
» environmental variables such as the significant tornado parameter, helicity, or the supercell com-
7 posite parameter, have shown skill in distinguishing regions with favorable conditions for tornadic
2 storm formation and where the most intense tornadic storms are likely to form (e.g., Stensrud et al.
7 1997; Rasmussen and Blanchard; Thompson et al. 2003, 2012). High-resolution modeling stud-
» 1es demonstrate that low-level streamwise horizontal vorticity is a key ingredient in environments
s favorable for tornadogenesis, as tilting of this vorticity into the vertical dimension helps maintain
% a strong, steady, low-level mesocyclone (e.g., Coffer et al. 2017; Orf et al. 2017). In addition to
7 the tornadogenesis process, simulations of tornadic supercells have further indicated that wider
7w updrafts can lead to more intense tornadoes if it is assumed that the scale and intensity of the tor-
» nadic circulation is associated with the scale and intensity of the rotating updraft at higher altitudes
o (Trapp et al. 2017), but these model results have been demonstrated to be sensitive to the design

& of the model simulations (Coffer and Markowski 2018).
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=  Forecasting the potential for severe and tornadic storms hours to days in advance has largely
ss been accomplished using predicted or measured properties of the near-storm environment (e.g.,
s« Cintineo et al. 2013; Parker 2014). These include winds, temperature, moisture, and related vari-
s ables such as CAPE and vertical wind shear. While both individual environmental variables and
s unique combinations of different variables have proven to be useful predictors of severe storms and
& tornadoes, their utility in the warning process is limited in part by the lack of observations avail-
s able at scales necessary to resolve the near-storm variability in real time (Thompson et al. 2003;
& Parker 2014). In addition, the stochastic nature of internal storm dynamics results in considerable
o overlap in the parameter spaces occupied by tornadic and non-tornadic storms, particularly in the
o case of weak tornadoes. This overlap makes it challenging for a forecaster to determine which
« storms will and will not be tornadic within a given environment (Anderson-Frey et al. 2016).

«  Operational observing systems in the United States provide measurements of storms at high spa-
« tial and temporal resolution and for many years. The Next-Generation Weather Radar (NEXRAD)
» network provides three-dimensional observations of storms at approximately 5-min increments
« (Crum and Alberty 1993). Satellite imagery from the Geostationary Operational Environmental
o Satellite (GOES) constellation provides cloud-top visible and infrared (IR) wavelength measure-
» ments of storms at intervals of 15 min or less (Menzel and Purdom 1994). The GOES-16 Advanced
» Baseline Imager provides imagery with temporal resolutions of 30 seconds to 1 min over 1000 km
wo X 1000 km regional domains, and every 5 min over much of North America (Schmit et al. 2017).
w0 Prior to GOES-16, GOES-14 was used in experimental mode to acquire 1-min resolution data,
e Wwith a focus on severe-storm and high-impact weather analyses (Schmit et al. 2013).

ws  This study seeks to evaluate the utility and limitations of remote sensing observations to objec-
s tively discriminate between severe and non-severe storms using a fusion of recent high-resolution

s radar, satellite, and lightning datasets. In addition, tornadic storms are evaluated separately from
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s the remaining population of severe storms (those producing severe hail and straight-line winds)
w7 given their unique impacts and societal relevance. The goal of this work is to determine the value
s Oof modern remote sensing observations for early objective discrimination between tornadic, se-
s vere and non-severe storms. Below, novel results are presented that reveal significant differences
o 1n inferred upward motion and rotation between a large sample of severe and non-severe storms.
i These metrics reach a maximum in tornadic storms during the time tornadoes occur. Based on
2 these results, an objective data-based approach for tornadic storm identification and short-term

s prediction is developed for performance evaluation.

1 2. Data and Methods

ws  a. Cases

we  This study examines 27 single-day severe weather events in the United States that occurred
w7 during 2011-2016. These cases comprise more than 7000 storms defined using NEXRAD data,
s 273 of which produced tornadoes (Table 1). Severe weather days were chosen to capture a wide
e range of environmental conditions, severe weather frequencies, and tornado intensity. Nine of the
20 27 days were chosen due to the availability of GOES-14 super rapid scan data (1-min intervals),
2 which is necessary to calculate satellite-based cloud-top divergence (Apke et al. 2016, 2018). The
22 days when GOES-14 data were available are in bold in Table 1. Additional case studies were
s added to represent a variety of severe weather events from widespread tornado outbreaks in late
24« Spring to wintertime mesoscale convective systems. Radar-derived storm tracks (see Section 2f)
s from all 27 cases are shown in Fig. 1. Most storms analyzed in this study are clustered in the

s central U.S., but some events extend into the eastern U.S. and the Mississippi Valley.
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w2 b. Radar Data

128 NEXRAD Level II data (i.e., volumes in range, azimuth and elevation relative to the loca-
s tion of a radar) were retrieved from the National Centers for Environmental Information (NCEI)
1w (NOAA/NWS/ROC 1991). The NEXRAD network in the contiguous United States consists of
w more than 140 WSR-88D S-band (10-11 cm wavelength) radars that observe precipitation parti-
we cles. All NEXRAD observations used in this study were obtained at a range resolution of 250
ws M, an azimuthal resolution of 0.5 degrees for the lowest 3-4 elevations and 1.0 degree otherwise,
ws and typically at 14 elevations per volume. Each Level II volume includes (at a minimum) the
ws radar reflectivity at horizontal polarization Zy that is related to the size and/or density of cloud
ws and precipitation particles in a radar volume and is in units of dBZ, and the radial velocity Vg,
w» a measure of the motion of cloud and precipitation particles toward and away from the radar lo-
= cation, in units of m s~!. Depending on the characteristics of the operational scanning strategy,
= the expected uncertainty in NEXRAD observations is up to 1 dB for Zy and up to 1 m s~ ! for V.
w0 These uncertainties can lead to even greater uncertainties in many of the derived variables outlined
« below, but such errors are typically smaller than observed differences between storm types (e.g.,
w2 see documented errors in observables and derived variables in OFCM 2005, 2006).

ws  The radar data are processed using the four-dimensional space-time merging methods described
s 1n Homeyer et al. (2017) and references therein, which resulted in volumes of the radar variables
ws at 2-km horizontal resolution, 1-km vertical resolution, and 5-min temporal resolution over the
ws entire extent of each analysis domain (see also information available at http://gridrad.org).
w7 Merging of Vg from multiple radar volumes onto a common grid is challenging, largely due to
ws the fact that V is a measure of the motion of scatterers toward and away from the radar, such

w that any given measurement has a unique geometry and thus can vary significantly in magnitude
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o and sign compared to a measurement made at the same location from a different radar. In order
s to overcome this challenge, derivatives of Vg must be merged instead. For this study, the radial
w2 derivative of Vg (radial divergence) and the azimuthal derivative (azimuthal shear) are merged into
s multi-radar volumes, both of which are computed using centered differencing. These yield the
s« approximate half-components of the divergence and rotation, which will be referred to as simply
s divergence and rotation in the remainder of the paper. Given the expected uncertainties in Vg, the
 resulting uncertainties in divergence and rotation estimates should be less than 0.004 s~!, with
7 uncertainties in derived rotation decreasing by more than an order of magnitude out to the farthest
s ranges observed by a radar (due to increasing azimuthal length scales; see also the discussion at
s the end of Section 3). This estimate is based on calculations using fixed range resolution, varying
w azimuthal resolution and assuming maximum error in winds: 1 m s~! at each bound of the
w1 derivative, such that the maximum AV error expected is 2 m s~!. For the azimuthal derivative,
w2 the distance is 2A0 for the derivative. For 0.5° azimuthal sampling, A8 increases ~875 m per 100
ws km range. For 1° azimuthal sampling (most elevations), A@ increases ~1750 m per 100 km (i.e.,
e twice that of 0.5° resolution). To estimate the expected uncertainty in the azimuthal derivative, it
e is simply (2 m s~1)/(2A8). For ranges beyond 30 km, the uncertainty for the azimuthal derivative
w is much less than 0.004 s~! in all cases. For the radial (i.e., range) derivative, the uncertainty is (2
& m s~ 1)/(500 m) everywhere (i.e., 0.004 s—!). While it is not possible to evaluate the uncertainties
s Of these and other derived variables in greater detail due to a lack of finer-resolution auxiliary data
w0 Sets, we expect the errors in rotation and divergence in our multi-radar merged data to be reduced
o further by following several quality-control steps outlined below.

i  First, since Vg is prone to large errors in magnitude and sign due to aliasing (i.e., winds that
2 exceed the maximum detectable Vi at a given operating frequency — the Nyquist velocity — and

7 become “folded”), the winds must be de-aliased prior to computing the derivatives (Doviak and
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e Zrni€ 1993). De-aliasing is performed using the Python ARM Radar Toolkit (Py-ART; Helmus
s and Collis 2016). For use in this merging procedure, a Py-ART routine is invoked that does not
s require a reference atmospheric wind profile and is more computationally efficient than alternative
7 approaches — dealias_region_based, which accomplishes de-aliasing by modeling the problem as a
s dynamic network reduction.

7w  Following de-aliasing, random fluctuations of Vg in each azimuthal sweep (a 360-degree scan
w0 mMmade at a single elevation) are further suppressed by applying a 3x3 median filter and by us-
w1 1ng a 5S-gate running-mean range filter prior to computing the radial and azimuthal derivatives (in
w2 that order). The derivatives (divergence and rotation) are then calculated using the quality con-
s trolled Vg and merged into the large-area, multi-radar dataset following the procedure in Homeyer
ws et al. (2017). In order to avoid potential artifacts within weak or non-meteorological radar echo,
ws Vg derivatives are only analyzed within Zg > 30 dBZ in this study. Similar techniques describe
s known uncertainties that occur with Vg derivatives in range and azimuthal distance (Smith and
v Elmore 2004), which can be as large as £20% relative to a known (or prescribed) value. The
s divergence maximum above an altitude of 8 km (upper-level; example in Fig. 2A) and the conver-
w9 gence maximum — or divergence minimum — below 3 km (lower-level; Fig. 2B), as well as their
o column maximum values, are calculated for each storm at each time step. Maximum cyclonic
1 rotation is also calculated for the lower- and upper-level altitudes (Figs. 2D & E), as well as for the
w2 mid-levels (4-7 km). Due to the nature of radar sampling, the low-level variables will be limited by
s the distance to the radar, and thus will have much fewer data points than the mid- and upper-level
e variables.

s Echo-top altitudes are computed for this study using multiple Zy thresholds, with the majority

e Of analysis conducted using 40-dBZ echo-top altitudes (Fig. 2G). The echo-top altitudes are com-
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w» puted at every horizontal grid point by finding the highest altitude where Zy exceeds the specified
ws threshold, provided that Zp is also greater than the threshold in the next two lowest altitude layers.
199 Velocity spectrum width, or the standard deviation of Vg estimates within a radar volume, is
=0 also extracted from the radar data where Zg > 30 dBZ (Fig. 2H). Spectrum width is influenced by
21 several factors, including substantial contributions from horizontal shear in Vr at low-levels and
«2 turbulence at any level (Doviak and Zrni¢ 1993). The turbulence component has been linked to up-
s draft strength within convection and is often a major contributor to spectrum width observations at
20 altitudes in the middle and upper troposphere (Feist et al. 2019). The column maximum spectrum

s Width at each time step of each storm is calculated for analysis in this study.

26 C. Satellite Data

«»  GOES imagery was retrieved from University of Wisconsin-Madison Space Science and En-
=s gineering Center (http://www.ssec.wisc.edu/) and NOAA (1994). GOES is primarily a
=0 constellation of two operational satellites that continuously monitor the weather over the United
20 States: GOES-West stationed at 135°W and GOES-East at 75°W nadir longitudes. For the time
n period analyzed in this study, GOES-15 was operational in the West position and GOES-13 was
22 operational in the East position. GOES-13 and -15 provide visible and IR imagery at 5- to 15-min
2 intervals. A spare GOES satellite (GOES-14), positioned at 105°W, has been used for experimen-
2 tal super rapid scan observations in preparation for GOES-R (1-min frequency; SRSOR) during
s various periods since late summer 2012 (Schmit et al. 2013). For nine severe weather days (bolded
26 1n Table 1), 1-min imagery from GOES-14 is used for analysis. For the remaining severe weather
o7 days, imagery from GOES-13 is used. The GOES-13 and -14 Imager 0.65 um visible wave-

s length channel has a horizontal resolution of ~1 km at nadir, while the 10.7 um IR channel has a
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2re  horizontal resolution of ~4 km at nadir and an absolute accuracy of <1 K (Menzel and Purdom
20 1994).

2 Convective updrafts that penetrate through a thunderstorm anvil, known as overshooting tops
=2 or OTs, produce texture in GOES visible-channel imagery due to turbulent flow and shadowing
»s induced by the updraft penetration. An algorithm to detect and quantify this texture has recently
=« been developed that produces a “visible texture rating” product (Bedka and Khlopenkov 2016).
»s  Anvil clouds are identified using a two-step process and then a search is performed within the
2 anvils to identify texture associated with penetrative updrafts. The first step in anvil detection is
»7 based on thresholding of GOES visible reflectance based upon an empirical model used to define
»s how bright an anvil should be at a given time of day and day of year. Spatial and statistical analysis
»s Of the pixels that meet the day/time-dependent threshold is performed to eliminate singular pixels
= and preserve those within a broad area (greater than or equal to approximately 10 km?) of near-
= uniform reflectance characteristic of anvil clouds. Fourier-transform analysis of visible reflectance
=2 Within small (32 pixel) windows is then performed, yielding a power spectrum for varying wave-
=e lengths in a 32x32-pixel domain. Typical OT signatures and concentric gravity waves that often
=« surround OTs produce the strongest signal in a ring-like pattern with a wavelength of ~4-8 km.
xs  Pattern recognition is applied to the power spectrum to identify ring patterns within this wave-
=s length range. The results of the pattern recognition analysis define the unitless visible texture
7 rating (Fig. 2C); the most coherent ring patterns are assigned a high rating.

xs  Another method for convective updraft identification by GOES satellite involves objective iden-
= tification of vigorous anvil outflow in <1-min scanning rate information. This is achieved here
20 using the Super Rapid Scan Anvil Level flow system (SRSAL; Apke et al. 2016, 2018, and ref-

2 erences therein). SRSAL objectively identifies deep convection cloud-top flows with mesoscale
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2 atmospheric motion vectors (mAMVs; Bedka and Mecikalski 2005), which are point-source wind
2 estimates based on pattern recognition in a sequence of GOES visible images.

2« SRSAL contains a cloud-top horizontal divergence (CTD; Fig. 2F) product output to a
25 0.02°x0.02° longitude-latitude grid. When associating SRSAL CTD with individual storms, only
=s data points with final smoothing parameter (¢ from Hayden and Purser 1995, and Apke et al.
27 2018) values less than 0.5 are considered for analysis, as points with higher values are not densely
2s sampled by mAMVs. In order to mitigate sampling errors in storms obscured by cirrus at higher
2o altitudes, the data points for CTD, as well as visible texture rating, are also filtered by using only
=0 those points with a maximum visible texture rating greater than 7, which is indicative of a convec-
= tive OT and gravity waves generated by the OT (Bedka and Khlopenkov 2016). Note that SRSAL,
= like visible texture rating, is a visible-only product as it requires the Visible channel to operate.
s The maximum CTD is calculated at each time step for each storm.

=« In order to extract satellite data along the path of the radar-based storm tracks, corrections for
2 parallax error (owing to the viewing geometry of the satellite) are required. Parallax error increases
2 as the cloud-top altitude and distance from satellite nadir increases (Vicente et al. 2002). Methods
7 typically used to correct for parallax involve converting IR cloud-top temperature to cloud-top
= altitude using a reference tropospheric temperature profile. However, these methods are prone to
=0 large errors for deep convective anvils because high-altitude clouds may either be: 1) thermally
=0 adjusted to stratospheric temperatures that are warmer than the upper troposphere, or ii) be opti-
2 cally thin and thus mostly transparent in IR. In this study, the merged radar observations are used
=2 to correct for parallax error. In particular, the Zg = 5 dBZ echo-top altitude is used as a proxy for
s cloud-top height to estimate parallax. These estimates are used to correct the coordinates of the

2 satellite imagery in order to extract values coincident with the storm tracks.
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s d. Lightning Data

2 The Earth Networks Total Lightning Network (ENTLN) detects lightning using pulses in verti-
7 cal electric field measurements from parts of the 1 Hz to 12 MHz frequency range from over 700
s sites across the contiguous United States (Liu and Heckman 2011). Individual pulses are located in
s Space and time by statistically solving over-determined electrical signal time-of-arrival equations
2o Using measurements from at least 5 stations. Sources close together in space and time are grouped
o into flashes, which are binned into 0.08° x0.08° longitude-latitude (~64 km?) flash density grids
2 for analysis, designed to emulate the spatial resolution of data to be provided by the Geostationary
s Lightning Mapper instrument (Goodman et al. 2013). Lightning activity is correlated with intensi-
o fication of updrafts (Schultz et al. 2017). When upward motion in the mixed-phase (liquid and ice)
=5 region of a cloud increases, hydrometeor collision charging mechanisms typically become more
= efficient and thus, lightning flashes become more frequent (Deierling and Petersen 2008). ENTLN
7 data were available for eight of the nine GOES-14 severe weather days. The maximum of the total
s lightning flash density is extracted along each storm track for analysis in this study, which consists

2 Of both cloud-to-ground and intracloud flash density (Fig. 2I).

w0 €. lornado Warnings

2 Tornado warnings from the National Weather Service are used here to provide context on which
2 storms produced physical indications of possible tornadogenesis and were publicly recognized by
2 Wwarning meteorologists. NWS warnings were obtained from the online archive maintained by
= lowa State University (Iowa Environmental Mesonet 2017). The warnings are provided as shape-
s files, with each warning consisting of a start (issuance) and end (expiration) time and coordinates
= Of a polygon outlining the warned area. A warning was linked to all storm tracks that passed

27 through the warning polygon during the time the warning was valid.

13
Accepted for publication in Journal of Applied Meteorology and Climatology. DOI 10.1175/JAMC-D-18-0241.1.



ws  f. Storm Tracking

= Analysis of all datasets on an individual storm basis in this study is facilitated through objective
=0 radar-based storm tracking. In particular, individual storm tracks are computed for each severe
=r weather day using an echo-top algorithm described in Homeyer et al. (2017). Local maxima in
=c Mmaps of Gaussian-smoothed echo-top altitude are identified in each 5-min radar observation and
2s linked together in time if they lie within close proximity to each other (<12.5 km). For this study,
2« tracking is accomplished through time linking of Zy = 40 dBZ echo-top maxima, filtered by the
s convective echo classification output by the Storm Labeling in 3 Dimensions (SL3D) algorithm
26 (Starzec et al. 2017). Tracked echo-top maxima are required to exceed an altitude of 4 km and be
27 linked across 3 or more 5-min radar analyses. Radar reflectivity images of the objectively tracked
26 Storms were reviewed to manually identify and merge discontinuous tracks that correspond to the
20 same storm. The quality-controlled storm tracks are then used to extract maximum or minimum (in
w0 the case of convergence and GOES IR brightness temperature) values from each dataset within a
s 10-km radius of the storm location at 1-min intervals, with observations made at coarser resolution
w2 than 1-min interpolated linearly in space and time to the storm track location. Such interpolation
ws 18 only performed for data with time coverage gaps less than or equal to 5 min. Severe Weather
w« Data Inventory (SWDI) tornado reports from NCEI are also added to the dataset and linked to the
ws nearest storm within 3 km of the tornado path (National Centers for Environmental Information

306 20 1 7).

w7 8. Data Analysis

ws  The tornadic storms are analyzed by extracting 1-min data points within a 5-min window cen-
we tered on 30 and 15 min before the first tornado, 15 and 30 min after the last tornado, and during the

s entire time period of any tornado. This allows assessment of the potential for discrimination be-

14
Accepted for publication in Journal of Applied Meteorology and Climatology. DOI 10.1175/JAMC-D-18-0241.1.



s tween tornadic and non-tornadic storms from each variable and for providing positive lead times.
sz ' Time periods prior to only the first tornado in each storm are evaluated (rather than those prior to
s all individual tornadoes) to best isolate unique evolutionary characteristics of tornadic storms be-
s+ fore they produce a tornado. Otherwise, time periods between successive tornadoes within a single
s Storm may bias the perceived evolution in storm-based analyses and corresponding observational
s indicators of tornado potential. Similarly, time periods following the last tornado are analyzed to
7 reveal the capacity for each variable to capture a decreasing tornado threat. The tornadic storms
s are compared to the most intense 30-min period of all tracked non-tornadic storms (i.e., any storm
s With a persistent 40-dBZ echo top exceeding 4 km) and of non-tornadic storms linked with severe
= hail or wind reports. The most intense 30-min period is defined as the +15-min window centered
21 on the storm-maximum (or minimum) value observed for each separate variable. Therefore, the
2 time periods considered to be the most intense for the non-tornadic storms could differ between
»s variables. The non-tornadic storms are separated into categories containing non-severe, severe
=« [those containing >1 in. (2.54 cm) diameter hail and >50 kt (25.7 m s~ wind speeds at ground
»s level], and significant severe storms [those containing >2 in. (5.08 cm) diameter hail and >65 kt
= (33.4 ms~!) wind speeds at ground level]. Significant severe non-tornadic storms were not in-
= cluded in the severe non-tornadic storm category and neither severe storm category was included
»s 1n the non-severe non-tornadic category. While many variables were analyzed during the course
= Of this study, the analysis presented here focuses on variables that provided the greatest discrimi-
w0 natory ability from each data source. Table 2 provides a concise list of all variables analyzed and
w included in the remainder of the paper.

s«  The updraft strength within storms is inferred here using a kinematic approach based on diver-
ws  gence observations. Kinematic approaches for inferring upward motion involve vertical integration

« Of the horizontal wind divergence through a column with the assumptions of an incompressible
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ws  Or anelastic atmosphere (e.g., O’Brien 1970). Strong upper-level divergence located at altitudes
s above low-level convergence within convection (i.e., a two-layer divergence profile) implies strong
s upward motion due to the conservation of mass in the atmosphere. While the radar and satellite
ws  Observations can only measure winds within and atop storms, respectively, the upper-level diver-
w  gence alone can (with assumptions) serve as a proxy for updraft strength in deep convection.

s  The utility of upper-level divergence as a proxy for updraft strength is primarily limited by vari-
s« ations in the depth of analyzed storms and coarse vertical sampling. If all storms spanned the
«2 same depth in the atmosphere and had equivalent divergence profile shapes, differences in the
«s upper-level divergence (or low-level convergence) maxima would be proportional to differences
s« 1n vertical velocity. Since the vast majority of storms analyzed in this study reach the tropopause
«s and the tropopause altitude varies by <3 km across the 27 cases analyzed, it is assumed that the
«s differences in storm depth have a minor impact on the use of upper-level divergence as a proxy for
s updraft strength. In a scenario where two storms had equivalent maxima in upper-level divergence
«s but differed by 3 km in depth, the inferred updraft speed for the deeper storm would be 25% larger
«s than that of the shallower storm. Errors could be larger if the divergence profile shapes differed
s considerably between storms, which is not possible to adequately assess with the data used in this
= study. Single-radar estimates of divergence at high elevation angles (i.e., those obtaining mea-
= surements in the upper troposphere) contain additional error due to contributions from the vertical
s component of the wind and hydrometeor fall speeds to the measured Vi, but these errors are ex-
= pected to be relatively small (or potentially helpful for diagnosing relative differences in updraft
«s  strength given the relationship between vertical velocity and the horizontal divergence). Others
= have had success assuming upper-level divergence is related to updraft strength, for example, in

7 hail size nowcasting (e.g., Witt and Nelson 1991; Boustead 2008; Blair et al. 2011).
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s h. Performance Evaluation

s Asoutlined in Section 3a, an evaluation of the ability of a simple objective technique to identify
w0 Storms capable of producing tornadoes before they occur was performed using the product of two
s« radar-derived kinematic fields: divergence and rotation. To avoid being overly restrictive with an
s« arbitrary altitude threshold, the column-maximum divergence is used in the product calculation.
ws The rotation in the divergence-rotation product (maximum divergence multiplied with maximum
s« rOtation) is the maximum at upper- and mid-levels (i.e., the largest value found anywhere at and
«s above 4 km). Storms that exceed a single threshold value of this product (i.e., [divergence X ro-
ws tation] > threshold) for a specified time period are flagged as potentially tornadic and the time at
w7 Which the condition is met is recorded. For a predictive model, the resulting probability of detec-
s tion (POD), false alarm ratio (FAR), critical success index (CSI), and bias forecast skill metrics

wo for the storm population are computed using Equations 1 through 4.

No. correctly flagged storms

POD = 1
No. tornadic storms M
FAR — No. incorrectly flagged storms 2)
No. storms flagged
csi= ( L1 1)1 3)
~ \1-FAR ' POD
POD
Bias = 4
T TFAR X

370 A perfect forecast has a 100% POD, 0% FAR, and a CSI and bias of 1 (e.g., Roebber 2009).
o Correctly flagged storms are tornadic storms identified prior to the occurrence of the first tornado

o2 and incorrectly flagged storms are those flagged that never produce a tornado. Mean and median
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o lead times of the potentially-tornadic identification relative to the first occurrence of a tornado
o« (hereafter the flag lead time) within each storm are also computed. Flag lead times reported in
s this study are computed only for correctly flagged storms (i.e., missed tornadic storms are not
o 1ncluded in lead time calculations as having lead times of 0). Tornadic storms with O or negative
a7 lead times are considered to be missed storms, which is accounted for in the POD. For evaluation
s purposes, the first instance of a tornado warning for a storm from the NWS served as a baseline
oo potentially-tornadic identification for comparison with the objective threshold exceedance method.
w0 Apart from the difference in storm identification method, the performance of the objective method
» and NWS tornado warnings is evaluated in the same way. Thus, calculation of lead times for these
« metrics may favor the objective approach given the fact that NWS warnings are commonly issued
w for a finite duration of 30 or 45 minutes, but the corresponding POD, FAR, and CSI calculations
s do not favor either method.

ws  Performance evaluations can also be made for varying storm environments, which is done here
s using the number of tornadic storms for a given day when the primary storm mode was discrete
w7 convection (i.e., supercells and ordinary cells). All cases for which the primary mode was multi-
we cellular convection (typically mesoscale convective systems or MCSs) are analyzed separately
s because the environments in which they occur often differ considerably from supercells (e.g.,
w0 see Flournoy and Coniglio 2019, and references therein). The primary modes were subjectively
w1 evaluated, where the mode that is dominant during the actively tornadic period was chosen. MCSs
s« are the primary storm mode for five of the 27 cases (Table 1). Events for which the dominant storm

s«  mode was discrete convection are grouped into those having 1-5, 6-15, or 16+ tornadic storms.
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e 3. Results

ws  The analysis of 27 severe weather day cases, based on both kinematic and physical metrics,
ws shows that significant severe and tornadic storms generally have greater inferred upward motion
7 and rotation than severe and non-severe non-tornadic storms (Figs. 3 & 4). The maximum diver-
ws  gence estimated from both radar and satellite is substantially stronger for significant severe non-
we tornadic and tornadic storms compared to that found in non-tornadic non-severe storms, especially
w0 When there is a tornado on the ground (Figs. 3A-3B). Severe non-tornadic storms show interme-
« diate divergence magnitudes relative to the significant severe and non-severe storm populations.
«2 Divergence for significant severe non-tornadic storms is similar to that observed in tornadic storms
«s prior to tornadogenesis, suggesting little to no ability to distinguish between the two storm types
«« before a tornado has occurred. The difference in median values between the significant severe or
«s tornadic storms (especially leading up to the first tornado) and the non-tornadic storms is greater
«s for the radar-estimated divergence than the satellite divergence, with clear and consistent differ-
«7 ences prior to first tornado occurrence. Divergence estimates from the radar and satellite sources
«s here do not account for density changes in the atmosphere with height (i.e., differences in storm
«s depth); thus, inferring a stronger updraft within storms containing larger divergence involves an
«0 incompressible atmosphere assumption. Though not shown, using an anelastic assumption (where
«1 base state density varies with height) and deriving mass-flux divergence instead provides consis-
<2 tent results with those shown here.

s« Differences between the divergence estimated from ground-based radar and satellite imagery
s are likely due to both the limited information detected by satellite (i.e., at cloud top only) and the
«s differences in the spatial resolution of the two datasets. It is also possible that some of the differ-

«s ence can be due to the limitations of the radar-derived divergence due to the previously discussed
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«7 1ssue with the radar beam inclination. Although the number of cases differs from the satellite to
«s the radar data, the cases where 1-min GOES-14 imagery was available were previously analyzed
«s  separately for the radar divergence with nearly identical results to the 27 cases in this study (not
2 shown), indicating that the differences between radar and satellite divergence are not due to a sam-
2 pling issue. Fig. 4A, which shows the maximum upper-level divergence, is nearly identical to the
2 column-maximum divergence in Fig. 3A, implying that column-maximum divergence typically
23 occurs at altitudes above 8 km.

2«  Physical metrics of strong updrafts show behavior consistent with that observed from radar and
»s satellite divergence. Specifically, radar-observed 40-dBZ echo-top altitudes (the maximum alti-
2 tude reached by radar-indicated precipitation of considerable size — e.g., large rain drops or ice
27 particles such as hail) imply that significant severe non-tornadic and tornadic storms have stronger
»s updrafts than weaker severe and non-severe non-tornadic storms (Fig. 3C). This is not a surpris-
2 1ng result and is due to the fact that larger precipitation particles have faster fall speeds, meaning
«  stronger in-cloud vertical motion is required to loft them to higher altitudes. Identifying cloud-top
«  altitudes from satellite is challenging when storms reach the tropopause (commonly the case for
« storms analyzed in this study) due to the dependence of the relationship between cloud top tem-
«s perature and altitude in the stratosphere on both the resolution of the IR imager and the assumed
« environmental temperature profile, which can vary greatly in the extratropical lower stratosphere
ws (e.g., Griffin et al. 2016). Alternatively, it is possible to measure the visible texture of the cloud
ws top from satellite to indicate the tropopause-relative depth of OTs (Bedka and Khlopenkov 2016).
« A high visible texture rating implies a more complex texture, which is shown here to be correlated
ws  With stronger upward motion and higher tropopause-relative cloud tops (Fig. 5). Indeed, the visi-
@ ble texture rating is also highest in the tornadic storms examined here during tornadoes, providing

« further evidence of stronger upward motion than that in non-tornadic non-severe storms (Fig. 3D).
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« Tropopause-relative IR cloud-top temperatures show similar characteristics, but less contrast. Re-
«2 duced contrast in IR is likely due to the 16 times poorer spatial resolution (compared to the visible)
«s of the GOES imagery used in this study (Fig. A1B). As observed for divergence, the differences
« between physical characteristics of tornadic and non-tornadic storms are reduced when consider-
«s 1ng observations for the most intense periods in significant severe non-tornadic storms (expected
us  to be the most extreme non-tornadic storms).

«7  Three additional metrics that are related to upward motion in storms are shown to provide fur-
«s ther evidence of a unique relationship between both significant severe non-tornadic and tornadic
ws  storms and updraft strength. First, column-maximum Vg spectrum width from radar is shown (Fig.
= 3E) due to its dependence on turbulence that increases as the updraft strength increases (Doviak
s and Zrni¢ 1993; Feist et al. 2019). Spectrum width shows similar contrast between large val-
« ues in significant severe non-tornadic and tornadic storms and much lower values in non-tornadic
« non-severe storms to that observed for column-maximum divergence, further supporting the infer-
= ence that significant severe non-tornadic and tornadic storms are characterized by stronger upward
< motion than weaker severe and non-severe non-tornadic storms.

s Second, stronger upward motion has implications for lightning activity. Data from ENTLN
« show that flash density is greatest in significant severe non-tornadic storms and similarly high
s 1n tornadic storms during the time a tornado is occurring (Fig. 3F). This result is comparable to
s the so-called “lightning jump” feature discussed in previous studies and linked to severe weather
w (Williams et al. 1999; Schultz et al. 2009), although this study evaluates the absolute value of flash
« density rather than how rapid the lightning activity is increasing over time. Despite the large flash
« rates observed within tornadic storms, the lightning data also show considerable overlap between

« the severe non-tornadic and tornadic storm populations prior to the first tornado, which indicates
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«« that this metric is better at discriminating between severe and non-severe rather than tornadic and
«s non-tornadic storms.

«s Third, as an updraft intensifies within a rotating storm, stretching of vertical vortex tubes within
« provides increased vertical vorticity relative to storms with weaker updrafts (Markowski and
ws Richardson 2009), which is demonstrated well in the radar observations of rotation at all alti-
« tudes (Figs. 4B, 4D, and 4F). Increased lightning activity and low-to-mid-altitude rotation are
w0 currently being used as variables of interest for probabilistic forecasts of tornadoes (Smith et al.
o 2016). Here, of the three altitude layers of rotation analyzed, mid-level rotation (Fig. 4D) shows
«2 the greatest potential for discriminating between significant severe and non-severe (and tornadic
«s and weakly severe or non-severe non-tornadic) storms, with similar separation between categories
« to that found for radar-derived divergence. The lack of separation in low-level rotation between
w5 tornadic and non-tornadic storm categories deserves some explanation here. Considering the meth-
« 0ds used to calculate rotation outlined in Section 2b (smoothing via 3 x3 median filter and 5-gate
«7 running-mean and centered differencing), there are minimum scales of rotation that can be re-
w5 solved and retained in the merged multi-radar volumes. In addition, because the native radar data
«s have higher azimuthal sampling in the lowest elevation scans, the minimum scales of rotation
s that can be resolved are smaller at low levels and larger at mid and upper levels. In most cases,
« these minimum resolvable scales are 2-3 km at low levels and 3-6 km at mid and upper levels.
« Thus, since mesocyclone diameters are commonly between 1 and 10 km (Stumpf et al. 1998), the
s smallest mesocyclones will not be detected in these data. Low-level observations here have an
« advantage in the scales (and magnitudes) of rotation that can be retained due to the enhanced res-
w5 olution there compared to higher altitudes, so a lack of mesocyclone detection doesn’t explain the
s differences between low-level and mid-level rotation. The minimum threshold of Zy > 30 dBZ

« applied to analyses of rotation could also be a source of reduced discrimination at low levels, since
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ws  Strong rotation can often be found within weaker echoes at such altitudes. Thus, we did evaluate
s rOtation using a weaker threshold of Zy > 10 dBZ, which did show some increases in low-level
w0 rotation for tornadic storms overall, but also an increase in the spread of rotation values for all

s storm populations (not shown).

< a. Evaluation of a Simple Objective Short-Term Tornadic Storm Forecast Product

< While the statistical evaluations in Figures 3 and 4 show that radar-derived divergence and rota-
« tion provide the largest separation between tornadic and weakly severe or non-severe non-tornadic
w5 storms prior to tornadogenesis, they do not evaluate the potential usefulness of the variables for
ss real-time discrimination. The figures also demonstrate that tornadic and significant severe non-
« tornadic storms show little separation, but both populations are small in number compared to
«s the more prevalent weakly severe and non-severe storms. Given these results and the societal
s relevance of tornadoes, an evaluation of the ability of a simple objective technique based on the
s product of radar-derived rotation and divergence to identify storms capable of producing tornadoes
1 before they occur is warranted. Although low-level rotation shows significant differences between
2 the non-tornadic categories and the tornadic periods, the limited number of observations available
s compared to that for mid- to upper-level rotation (see Table 3) leads to the exclusion of low-level
s« TOtation in the product of rotation and divergence here. To provide context for this objective thresh-
s 0ld method for storm discrimination, performance results (i.e., the ability to identify observed
ss tornadoes) are compared with the first tornado warning given to each storm by the responsible Na-
7 tional Oceanic and Atmospheric Administration (NOAA) NWS forecast office, which serves as a
ss metric of the first public recognition that a storm was potentially tornadic by forecasters. Note that
o the first warning is used here as a short-term forecast of a storm’s potential to become tornadic for
s context only, not to be confused with the evaluations conducted by the NWS of the performance of
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s all individual warnings, which aim to evaluate whether or not a warning encompassed the time of
sz an observed tornado. The tornado warnings are linked to the storm tracks generated for this study,
ss SO the exact same storms are analyzed for both the radar-based and warning-based methods.

s As outlined in Section 2h, the divergence-rotation product is based on column-maximum di-
s vergence and the maximum of rotation from mid- and upper-levels. It was found that a rotation-
ss divergence product threshold of 42 - 107% s2 is comparable to the cumulative performance of the
sv NWS warning-based potentially tornadic storm flag over all 27 severe weather days (see Figs. 4E
ss and 6). This decision was arbitrarily made to facilitate direct comparison between the objective
so  threshold method and the NWS warning-based method. From Fig. 6, a 5-min time period of the
s divergence-rotation product exceeding the threshold is deemed sufficient for the objective thresh-
= 0ld technique, since the product did not appear to be greatly affected by random time variations
s2  (1.€., noise).

=  For objective divergence-rotation thresholds ranging from 5- 107 s72 to 80 - 10~% s—2 applied
=« to data from all 27 severe weather days, the CSI largely varies between 0.1 and 0.2 (Fig. 6). In
s comparison, the CSI of the NWS warning-based method is ~0.13 (indicated by the black circle in
= Fig. 6). The objective threshold method achieved a comparable CSI to the NWS method at a POD
s of approximately 58.3% and an FAR of approximately 85.9%, while the POD and FAR based on
2s the NWS method are approximately 51.7% and 84.9%, respectively. The mean flag lead time is
2o 43 min using the objective threshold method, while the median flag lead time is 35 min. Similar
s performance (skill) with positive lead time by the objective method indicates that the divergence-
st rotation product provides a comparable ability to discriminate between tornadic and non-tornadic
s storms prior to tornadogenesis.

s« The single-value divergence-rotation threshold calculated from the cumulative performance of

s all 27 days is applied to groupings based on the number of tornadic storms for a given case (Table
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s 4). The two lower-impact groupings (1-5 and 6-15 tornadic storms) showed both higher POD
s and FAR than the overall performance, with slightly lower skill. Though the POD decreases from
s ~70% to ~60% for the high-end days (those with 16+ tornadic storms), the FAR also decreases
s by a considerable amount, which in turn increases the skill of the objective method to 0.19. The
s performance decreases for the objective threshold method when the dominant storm mode is an
s« MCS. Namely, the lowest POD and highest FAR values are found in these cases, with the objective
s« threshold method showing the poorest performance. However, the median flag lead times from
== the objective threshold method are still the same as the overall median flag lead times from the
ss 27 cases. These results reveal that the ability of the objective threshold method to discriminate
s« between tornadic and non-tornadic storms is greatest in discrete cases (i.e., supercell storms) and
s the lead time of discrimination is relatively insensitive to the variation in event type.

s In order to illustrate the spatial appearance of the objective threshold evaluation, maps of in-
s Stantaneous fields at 20-min intervals from the 31 May 2013 event are shown in Fig. 7. Areas
«s exceeding the single-value divergence-rotation threshold are shown in purple in each map. Storms
s 1 and 4 exceed the threshold for extended periods of time and are each responsible for producing
so  several tornadoes (times indicated in each map), while storms 2 and 3 briefly exceeded the single-
s value threshold and never or only once produced a tornado, respectively. All four storms were
s tornado warned by the NWS for some time during their life cycles. The southern storm (labeled
s 1) produced an EF3 tornado near El Reno, OK at 23:03 UTC, as well as an EF0 tornado shortly
s« prior to the EF3 tornado. The first exceedance of the divergence-rotation product for storm 1 was
s observed at 21:50 UTC and the divergence-rotation product exceeded the threshold value over a
s larger area for storm 1 than the remaining storms, both prior to and especially during the EF3

ss7  tornado.
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ss 4. Summary and Discussion

s This study employed radar, satellite, and lightning observations from a large dataset of more than
so /000 storms to examine the ability of modern, high-resolution remote sensing data to objectively
st discriminate between severe and non-severe storms, with an additional focus on severe storms that
<2 produce tornadoes. It was found that radar-observed/derived physical and kinematic characteristics
s routinely enable discrimination between significant severe or tornadic and non-severe non-tornadic
s« storms, with indications from all datasets that inferred upward motion is strongest and rotation is
s fastest in tornadic storms during the occurrence of a tornado (see Figs. 3 & 4). Significant severe
s non-tornadic storms were found to broadly overlap with tornadic storms in most observations, but
s the size of the significant severe non-tornadic population is relatively small. While the tornadic and
ss non-tornadic discrimination results are broadly consistent in both radar and satellite-derived flow
s Observations, larger differences were seen between the storm categories in the radar observations.
so The separation between the tornadic and non-tornadic storm characteristics was found to be large
s enough such that a simple objective threshold method based on the product of radar-derived storm
s divergence and rotation was able to provide early indication of potentially tornadic storms with
sw comparable performance to indications based on NWS tornado warnings (see Fig. 6).

s« Previous studies have shown somewhat similar separation between storm categories using en-
s vironmental measurements from numerical model analyses and forecasts, such as the significant
s tornado parameter (e.g., Thompson et al. 2003). These studies typically isolate environments
s based on the most intense storm within close proximity to the model grid point. However, as out-
s» lined in Section 1, it is common to find both tornadic and non-tornadic (or severe and non-severe)
s storms within very similar environments, which makes it challenging to use these metrics for ob-

s0 jective storm discrimination. Analysis of such environmental variables was conducted during the
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s course of this research, but greater overlap, and thus weaker discrimination, between storm cate-
s2 gories was found compared to that provided by the radar-observed/derived physical and kinematic
ss Characteristics (not shown).

s« With respect to tornadic versus non-tornadic storms, the results of this study agree with the cur-
s rent understanding of the three-step process for tornadogenesis within supercells (Markowski and
s Richardson 2009; Davies-Jones 2015). Namely, the first step in a storm’s evolution to become
s tornadic is the development of a strong mid-level circulation, which is found routinely in the radar
s Observations at long lead times to tornadogenesis (see Fig. 4D). The second step for a tornadic
s storm is the development of a strong near-surface circulation as a result of processes occurring as
o air descends through the low-level outflow. The third and final step to becoming a tornadic storm
st 1S having this near-surface rotation come into alignment with in-storm perturbation pressure gra-
s dients associated with rotation aloft, that lift the air and contract it to tornado strength (Markowski
s and Richardson 2014). The maximum values observed in almost all physical and kinematic met-
s rics evaluated here being associated with time periods during observed tornadoes is evidence of
s the extreme and deep rotating updrafts associated with tornadogenesis in the conceptual model.

506 Given the extensive knowledge base that exists for severe, non-severe, tornadic and non-tornadic
s storms and the discussion given in the previous paragraph, it is not surprising to find that, on
s average, significant severe non-tornadic and tornadic storms have stronger inferred updrafts and
s greater rotation than non-severe non-tornadic storms. These findings are in agreement with a
oo Similar argument for tornadic storms that has recently been made for an association between the
1 strength of a storm’s mesocyclone and the width of the updraft, which Trapp et al. (2017) tied to
«2 tornado strength based on numerical simulations of tornadic storms. As shown in the example
«s maps of the divergence-rotation product (Fig. 7), the storm responsible for the 2013 El Reno, OK

«« EF3-tornado was associated with a higher area of divergence-rotation threshold exceedance than
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«s nearby storms with weaker tornadoes, which may be an indication of a broader updraft within the
«s El Reno storm. Future studies should investigate the relationship between metrics of updraft width
«7 and tornado strength in observations.

«s  One caveat of this study is that only 27 events from a period spanning 5 years were evaluated,
oo With most events occurring during the April-June time period. Thus, to demonstrate that our
s methods for case selection were not inherently biased, an analysis based on 22 additional severe
e weather days that were randomly selected from a single year (2011) is included in the Appendix.
s The results from these cases are generally consistent with that presented above and further support
e the argument that our case selection for the events analyzed throughout the paper was not biased.

s Another caveat of this analysis is the focus on single-polarization radar variables. While several
s dual-polarization variable extrema were investigated during the study summarized here, none of
e this analysis yielded statistically significant differences between severe categories and was there-
v fore not reported. A lack of significant differences could be due to insufficient diagnosis of dual-
s polarization signatures associated with tornadoes using extrema alone. It is also possible these
e signatures are suffiecently small in scale such that they are smoothed out in the gridded radar
e dataset. Nevertheless, dual-polarization radar observations and their utility for severe and tornadic
e storm discrimination should be investigated further in future work.

2 In the tornado warning process, the NWS forecaster faces two primary challenges: timely iden-
s tification of tornadic storms, and production of spatially concise warnings that sufficiently identify
« locations likely to be affected by a tornado. The objective system developed here can only help
s Wwith the former, as the physical connection between strong divergence near the storm-top and
= the eventual development of rotation near the surface is unknown and is required to confirm the
27 eventual presence and approximate location of a tornado. Furthermore, this study has shown that

s While weakly severe and non-severe non-tornadic storms are often considerably different than tor-
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s nadic storms in radar and satellite observations, significant severe non-tornadic storms (those most
o likely to be non-tornadic supercells) do not differ considerably from tornadic storms prior to tor-
« nadogenesis. Thus, additional work is required to evaluate the utility of the physical and kinematic
<2 radar observations (especially those at middle and upper levels) for the tornado warning decision
e making process. Furthermore, while the objective method of potentially tornadic storm detection
2 using the divergence-rotation product was found to perform at a skill similar to NWS warnings, the
s true value of this metric for the warning decision making process should be evaluated in greater
s detail in future studies. Namely, this work would benefit from increasing the number of cases
« to reduce uncertainty and include greater representation of observed seasonality and convective
e mode. Observing system simulation experiments (commonly referred to as OSSEs), which have
w0 been used to estimate radar multi-Doppler wind retrieval uncertainties (e.g., Potvin et al. 2012),
s« may also be helpful for improving understanding of the limitations of and uncertainties in the
1 divergence-rotation product.

«2  One potential barrier to implementing the divergence-rotation product evaluated here in an op-
s erational setting is the necessary step of dealiasing radial velocity fields, which is the most crucial
« and time consuming element of the process. However, dealiasing is commonly executed in real-
«s time within the software used by forecasters. In addition, while the divergence-rotation product
s Was calculated from multi-radar composites, it could easily be implemented using single-radar ob-
e servations. If similar methods to this study are used for computing divergence and rotation, differ-
s ences between the magnitude of the product in single-radar fields and the multi-radar composites
s are expected to be minimal, but it is required to evaluate the product from multiple neighboring
o radars to achieve similar vertical sampling. One aspect that was not investigated in this study is
e the development of a variable divergence-rotation threshold for the objective method to account

e for potentially relevant factors such as seasonality, location, or storm mode. It is likely that the
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e threshold found here is not “one size fits all”, but will vary based on such factors as evident by
e« the variation in performance between case types (Table 4). Again, further research is needed to
s examine the best way to utilize these results in an operational setting.

e In conclusion, these findings provide an opportunity for improving the early recognition of sig-
e nificant severe and potentially tornadic storms from modern radar, satellite, and lightning obser-
s vations. Increases in the spatial and temporal resolution of visible and IR satellite imagery now
o available following the transition of GOES-16 to operations in January 2018 will likely demon-
0 Strate improved capability to infer updraft intensity in the future. There are ongoing efforts to in-
e vestigate these metrics further using machine learning techniques, which will likely yield a greater

«2 performance than the simple objective threshold technique introduced here.
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o5 a. Tropopause-Relative Infrared Brightness Temperature

e Since IR brightness temperatures serve as a proxy for cloud top height and can help to indicate
ez the depth of overshooting tops (and thus, the strength of upward motion within convection), we did
s evaluate the potential of brightness temperatures to discriminate between severe and non-severe
es (and tornadic and non-tornadic) storms. IR brightness temperature did not show an ability to
s discriminate between severe and non-severe and tornadic and non-tornadic storms. A storm with
e a cold cloud top does not indicate that the storm will necessarily be severe or tornadic. Fig. A1A
&2 shows storms from the same example as in Fig. 2. The northeastern-most storm was producing a
s tornado at the time that map was valid for, while the other storm with a cold cloud top (deep blue
« shading) on the KS-NE border only produced a few ~1-inch hail reports and a 52-kt wind report.
e One of the southern storms also produced a tornado at a later time, but its minimum brightness
e temperature was only 3 K colder than at this time, which was considerably warmer than the KS-
& NE border storm that never produced a tornado. Note also that anvil regions well removed from
s precipitation echoes are comparably cold to the strong convective cores, which complicates the
e use of IR temperature thresholding for severe storm discrimination.

s The minimum IR brightness temperature from GOES within a storm is calculated and compared
o1 With the temperature at the tropopause in order to investigate the minimum tropopause-relative
e temperature of the cloud tops. Generally, if the tropopause-relative cloud-top temperature is neg-
s ative, the storm is penetrating into the stratosphere.

e« Lhe tropopause temperature was extracted from Rapid Update Cycle (RUC) or Rapid Refresh
es  (RAP) hourly output (Benjamin et al. 2004, 2016). The RUC/RAP models have a horizontal
ss resolution of 13 km and 50-51 vertical levels, and were retrieved from the National Centers for

7 Environmental Prediction (NCEP; National Oceanic and Atmospheric Administration, Earth Sys-
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s tem Research Laboratory 2012). The temperatures from RAP/RUC were linearly interpolated to
e the radar-based storm tracks in space and time for analysis.

wo  Although there is considerable overlap between the categories for the minimum IR brightness
o temperature, it is worth noting that the 5th percentile of the tornadic category is much colder than
ne the other categories (Fig. A1B). This implies that tornadoes seldom occur when cloud tops are
ns  warm relative to the tropopause, which differs from the severe and significant severe non-tornadic
na  categories. While GOES-13/14 data cannot resolve the coldest temperatures due to its spatial
25 resolution, the data indicate that cloud tops are relatively cold for tornadic storms on average.
ns After updraft intensification while the storm is tornadic, there is a lot of cold outflow generated,

w7 resulting in a smaller range of values after the tornado dissipates.

ws  b. Additional Cases

e An analysis of 22 randomly selected severe weather cases from 2011 (Table A1) supports the
7o general result from this study, though the upper-level variables show less separation between the
71 most intense period of the non-tornadic significant severe storms and the tornadic storms (Fig.
7 A2). These cases were tornado days that were randomly picked throughout the year. At least one
7 case from each month of the year is included to account for potential seasonality in tornadic and
7 non-tornadic storm characteristics. This analysis suggests that there is an important seasonality to
7s the divergence-rotation threshold, as the separation between storm populations remains similar to
7e the results presented in the main text, but all the boxes are shifted downward (i.e., magnitudes of

»7 each metric are smaller).
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022 TABLE 1. Dates, number of storms, number of tornadic storms, number of tornadoes, dominant storm mode
o3 (discrete or mesoscale convective system), and the longitude-latitude coordinates of the analysis domain for the
es 27 severe weather days analyzed in this study. Dates in bold represent days where GOES-14 and ENTLN data

es were available, with one exception (ENTLN data were not obtained for the 4 June 2015 case).

No. Tornadic Analysis Domain Coordinates
No. Storms (No. Dominant [long, laty, lony, lat;]
Date (No. Severe) Tornadoes) storm mode (°W and °N)

22 May 2011 469 (68) 21 (59) Discrete [95.5, 35.5, 87.0, 46.5]
24 May 2011 450 (88) 24 (64) Discrete [101.5,32.0,92.5, 39.0]
9 April 2012 30 (4) 1(6) Discrete [101.0, 33.5,95.0, 37.5]
13 April 2012 97 (6) 3(14) Discrete [100.5, 34.5, 95.0, 37.0]
14 April 2012 313 (30) 23 (96) Discrete [101.0, 36.0, 95.5,41.5]

20 May 2013 246 (67) 16 (35) Discrete [99.0, 31.5, 93.0, 40.0]

31 May 2013 391 (63) 14 (36) Discrete [99.0, 34.5, 87.0, 40.5]

12 June 2013 555 (126) 10 (21) MCS [96.0, 38.0, 80.0, 45.0]

27 April 2014 223 (57) 8(21) Discrete [99.0, 34.0, 91.5, 42.0]

10 May 2014 112 (40) 2(5) Discrete [99.0, 36.0, 90.0, 43.0]
11 May 2014 330 (63) 10 (41) Discrete [102.0, 36.0, 92.0, 44.5]
21 May 2014 54 (10) 2(5) Discrete [106.0, 37.5, 101.0, 41.0]
16 June 2014 406 (66) 10 (40) Discrete [100.0, 41.0, 89.0, 44.0]
17 June 2014 155 (22) 7 (16) Discrete [106.0, 41.5,94.5, 48.0]
18 June 2014 79 (8) 5(13) Discrete [100.0, 43.5, 98.0, 46.5]

13 October 2014 707 (80) 17 (24) MCS [95.5,29.5, 84.5, 40.5]
6 May 2015 202 (53) 23 (52) Discrete [100.0, 32.5,95.5, 41.5]
19 May 2015 329 (32) 13 (36) Discrete [103.0, 29.0, 94.0, 37.0]
24 May 2015 123 (16) 1 (10) MCS [105.0, 36.0, 97.0, 41.0]
25 May 2015 669 (64) 18 (28) MCS [105.0, 25.0, 89.0, 41.0]
27 May 2015 387 (48) 8(18) Discrete [104.0,29.5, 96.0, 41.5]
4 June 2015 290 (42) 3(23) Discrete [108.0, 34.0, 93.0, 43.0]

23 December 2015 137 (34) 7 (26) MCS [92.5,33.5, 84.0, 42.0]
15 April 2016 160 (28) 4(12) Discrete [104.0, 34.5, 99.0, 40.5]
9 May 2016 199 (64) 10 (26) Discrete [100.0, 33.0, 94.0, 41.5]
24 May 2016 150 (35) 11 (44) Discrete [104.0, 35.5,97.0, 41.0]

25 May 2016 17 (6) 2(6) Discrete [99.5,35.5, 95.0, 40.0]

Total 7280 (978) 273 (777) - -
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TABLE 2. All variables presented in this study, categorized by their source and type (physical or kinematic).

Radar Satellite Lightning
Kinematic Rotation Extrema Cloud Top Vorticity Extrema N/A
Divergence Extrema Cloud Top Divergence Extrema

Velocity Spectrum Width Extrema

Physical Echo Top Altitude (at a 40-dBZ Zy threshold) Visible Texture Rating Total Flash Density

44
Accepted for publication in Journal of Applied Meteorology and Climatology. DOI 10.1175/JAMC-D-18-0241.1.



TABLE 3. The number of 1-min observations contributing to box plots in this study.

Non-tornadic Non-tornadic 30 min before 15 min before ~ During 15 min after 30 min after
Figure  Non-tornadic severe significant severe first tornado first tornado tornado  last tornado  last tornado
3A 125615 16373 3256 961 1164 6207 1053 817
3B 15307 2215 558 112 138 541 93 54
3C 128713 16585 3318 961 1164 6210 1058 821
3D 21372 3221 735 117 232 977 168 119
3E 125671 16355 3281 961 1164 6210 1053 821
3F 36212 5284 1177 185 226 844 206 130
4A 122414 16260 3272 955 1164 6135 1041 796
4B 120454 15739 3287 953 1159 6134 1040 792
4C 96926 13586 2672 825 983 5243 863 672
4D 121654 16056 3220 951 1149 6123 1049 817
4E 121151 16143 3338 953 1159 6134 1040 792
4F 44429 6710 1431 378 465 3243 424 316
AlB 24699 2658 608 223 269 1086 231 170
A2A 231963 15850 2648 275 345 878 260 205
A2B 103295 13164 2289 224 290 745 195 158
A2C 220861 15224 2589 255 331 844 253 195
A2D 231293 15595 2653 275 345 878 260 205
A2E 232414 15790 2644 275 345 878 260 205
A2F 220677 15282 2588 260 331 845 253 195
A2G 238546 16080 2648 275 345 878 260 205
A2H 229796 15515 2648 275 345 878 260 205
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026 TABLE 4. Values of the performance metrics for the rotation-divergence product using a threshold of 42 -
w7 107° s72 [where NWS skill (CSI) was matched using data from all 27 cases]. Here, values are shown for the
ws performance when the threshold was used for all 27 cases, cases dominated by MCSs, and cases grouped by the

e20 number of tornadic storms that occurred.

Mean flag Median flag

POD (%) FAR (%) leadtime (min) lead time (min)

27 cases 58.30 85.85 43.0 35

MCS 32.00 92.52 38.4 35

1-5 tornadic storms 69.57 87.30 54.4 47

6-15 tornadic storms 69.23 87.20 39.5 34

> 16 tornadic storms 58.88 77.90 44.8 34
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930 Table Al. Similar to Table 1. Dates, number of storms, number of tornadic storms, number of tornadoes,

w1 dominant storm mode (discrete or mesoscale convective system), and the longitude-latitude coordinates of the

o2 analysis domain for the randomly selected 2011 severe weather days.
No. Tornadic Analysis Domain Coordinates
No. Storms (No. Dominant [long, latg, long, lat; ]
Date (No. Severe) Tornadoes) storm mode (°W and °N)

25 January 2011 665 (18) 6(7) MCS [ 84.0,25.0, 80.0, 31.0]
24 February 2011 547 (97) 10 (19) Discrete [ 95.0,31.0, 82.0, 38.5]
5 March 2011 501 (8) 4(7) Discrete [ 96.0,28.5, 86.5, 34.5]
19 March 2011 102 (10) 2(2) Discrete [103.5,32.0, 78.5, 35.5]
29 March 2011 1101 (45) 2(3) Discrete [94.5,28.5, 84.5, 36.5]
09 April 2011 296 (34) 7(23) Discrete [ 98.5,40.5,90.0, 45.5]
21 April 2011 113 (7) 3(5 Discrete [104.5,28.5,96.5, 35.5]
26 May 2011 1415 (192) 12 (14) MCS [91.5,29.5,74.0, 43.0]
29 May 2011 346 (47) 34) MCS [ 94.0, 40.0, 81.5, 45.5]
e 1 June 2011 351 (48) 4(7) Discrete [ 80.5,39.5, 67.0, 46.5]
10 June 2011 1016 (74) 1(1) Discrete [97.0,37.0, 80.5, 42.0]

12 June 2011 557 (41) 9(12) Discrete [108.0, 38.0, 74.5, 47.5]

27 June 2011 216 (8) 2(2) Discrete [ 85.5,36.5,79.5,42.0]
29 June 2011 199 (12) 2(2) Discrete [117.0, 43.0, 104.0, 49.0]
17 July 2011 241 (17) 4(8) Discrete [104.0, 44.0, 93.5, 49.0]

26 July 2011 1416 (50) 4(7) Discrete [104.0, 40.0, 69.5, 47.0]

2 August 2011 212 (1) 1(1) Discrete [ 84.5,25.0, 80.0, 30.5]
17 September 2011 488 (15) 1(3) Discrete [102.5, 31.5, 94.0, 37.5]
7 October 2011 425 (21) 3(4) Discrete [104.0, 34.0, 95.5, 43.0]
7 November 2011 552 (24) 2(15) MCS [103.0, 32.0, 92.5, 38.0]
21 December 2011 101 (1) 1(1) MCS [ 89.0, 30.0, 82.5, 35.5]
22 December 2011 632 (21) 10 (18) MCS [ 93.5,29.0, 83.0, 35.0]

Total 11492 (791) 93 (165) - -
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990 F1G. 3. Box plots for kinematic and physical metrics of upward motion derived from radar, satellite, and
01 lightning data. The notched box-and-whiskers show the 5th, 25th, 50th, 75th, and 95th percentiles of each metric
s for all severe weather days for which data are available. Notches in the boxes emanating from the median values
s represent the 95% confidence interval for the median values. When the notches of different boxes within the
s« same subplot do not overlap, the medians are taken to be significantly different (Krzywinski and Altman 2014).
ss The three leftmost boxes in each subplot show distributions based on the 30-min periods around the maximum
ws Of a given variable for all non-tornadic storms (NT), severe non-tornadic storms (SNT), and significant severe
o7 non-tornadic storms (SSNT). The five remaining boxes show distributions for tornadic storms at 30 and 15 min
ws prior to the first tornado (30BT and 15BT), during the lifecycle of all tornadoes (DT), and 15 and 30 min after
oo the last tornado (15AT and 30AT). The number of observations contributing to each box in every figure, as well

w00 as the values for the 5 percentiles for each box, can be found in the supplemental tables.
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1001 FIG. 4. As in Fig. 3, but for divergence and rotation variables. The gray horizontal line in panel E represents

102 the threshold used for the the objective tornadic storm identification method evaluated in Section 3a.
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1003 FIG. 5. Tropopause-relative Zy = 10 dBZ echo-top altitude from radar versus visible texture rating from
w04 satellite imagery for all 27 severe weather days. Each box-and-whisker represents the Sth, 25th, 50th, 75th, and
w05 95th percentiles of the echo-top altitude distribution at a specified range of visible texture ratings. Numbers at

w06 the bottom of each box represent the number of contributing 1-min observations.
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1007 FIG. 6. Performance diagram for the objective threshold and NWS warning-based methods. Solid black lines
w08 are lines of constant CSI. The dashed lines represent bias, where values >1 signify over-forecasting and values
w00 <1 signify under-forecasting. Colored lines show the performance of the objective threshold method at multiple
w10 time periods (5, 15, and 30 min) of exceedance for divergence-rotation product threshold values ranging from
o 5-107% to 80-107° s~2. The open black circle shows the cumulative performance for the 27 severe weather

w12 days for the NWS warning-based method.
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1019 Fig. Al. Panel A shows an example map of the IR brightness temperature for the same case as in Fig. 2. Panel

120 B depicts box plots for minimum tropopause-relative IR brightness temperature similar to those in Fig. 3.

58
Accepted for publication in Journal of Applied Meteorology and Climatology. DOI 10.1175/JAMC-D-18-0241.1.



12

14— A. Radar column-maximum divergence _—- B. Radar upper-level rotation n
C o 10
= 12— — —
It/) [ —1_ — 5
? C -+ -1, 3
2 10— o -8 §
3 F 4 1 =
[$] I _ — [2]
5 °F + e 3
o - g 0 =%
e 6 — 0 =
s F T T4 3
S 4 i 1 o
& C 0 - =
= 4 =k
C C. Radar low-level convergence T D. Radar mid-level rotation n
10 [ 1 10
” C 1 1 g
e C T T 9, 3
2 81— — —8 £
s C T 1 =
1] — — — %)
S L 1 ] >
% -6 I I N 6 S
o = - =4 =
gy —I— —4 o
8 —+ - e
e) — — — [
& - —+ 4 =

-2 - — —2
—~ E. Radar divergence-rotation product T F. Radar low-level rotation n
in - €1 _
© 100 — o — 10
2 T 1z
: r T 1 N
g T S
8 L + 1 8
o 6ol T e &
S L -+ 47 2
g r T 1 =
o = - =
& 40— — —4 o
8 - =4 - s
c — — — 1]
[} L
(@)] — -1 — ~
5 20— o —2
2 = - -

D — — —
= G. Radar 40-dBZ echo-top altitude - H. Radar velocity spectrum width -

15— 1 —15 o
L 1 1 3
E T T 1 5
o 10— 1 110 =
g 10 T ] z
= [ aa | =
< [ T 1 3

— —+ — %]
51— — 15 =

NT SNT SSNT 30BT 15BT DT 15AT 30AT NT SNT SSNT 30BT 15BT DT 15AT 30AT

Fig. A2. Similar to Fig. 3. Box plots for the 22 randomly selected cases from 2011.
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