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ABSTRACT

Intense tropopause-penetrating updrafts and gravity wave breaking generate cirrus plumes that reside above

the primary anvil. These ‘‘above anvil cirrus plumes’’ (AACPs) exhibit unique temperature and reflectance

patterns in satellite imagery, best recognized within 1-min ‘‘super rapid scan’’ observations. AACPs are often

evident during severe weather outbreaks and, due to their importance, have been studied for 351 years. Despite

this research, there is uncertainty regarding why some storms produce AACPs but other nearby storms do not,

exactly how severe are storms with AACPs, and how AACP identification can assist with severe weather

warning. These uncertainties are addressed through analysis of severe weather reports, NOAA/National

Weather Service (NWS) severe weather warnings, metrics of updraft cloud height, intensity, and rotation de-

rived from Doppler radars, as well as ground-based total lightning observations for 4583 storms observed by

GOES super rapid scanning, 405 of which produced an AACP. Datasets are accumulated throughout storm

lifetimes through radar object tracking. It is found that 1) AACP storms generated 14 times the number of

reports per storm compared to non-AACP storms; 2)AACPs appeared, on average, 31min in advance of severe

weather; 3) 73% of significant severe weather reports were produced by AACP storms; 4) AACP recognition

can provide comparable warning lead time to that provided by a forecaster; and 5) the presence of anAACP can

increase forecaster confidence that large hail will occur. Given that AACPs occur throughout the world, and

most of theworld is not observed byDoppler radar,AACP-based severe storm identification andwarningwould

be extremely helpful for protecting lives and property.

1. Introduction and background

a. Severe weather indicators from visible and infrared
imagery

Geostationary satellites (GEOsats) provide a wealth of

multispectral observations of severe convective storms

throughout the world. The research and operational fore-

casting communities seek new approaches to detect and

predict severe storms from space to extend forecast

lead times and protect lives and property, especially

over regions without weather radar coverage. Over the

past several decades, unique patterns within convective

cloud tops and cloud evolution depicted by GEOsat

imagery have been deemed useful by the operational

forecasting or research communities for severe storm

detection and/or short-term (0–2 h) forecasting. These

include but are not limited to

1) rapid cloud-top cooling during storm initiation

(Cintineo et al. 2013),
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2) overshooting cloud tops (Dworak et al. 2012; Bedka

and Khlopenkov 2016, and references therein),

3) the presence of anomalously small water droplets or

ice crystals within an ensemble of developing cumu-

lus and within anvils (Lindsey et al. 2006; Rosenfeld

et al. 2008),

4) enhanced wind flow divergence and vorticity within

anvil cloud top (Apke et al. 2016, 2018),

5) above-anvil cirrus plumes, cold rings, and enhanced-

V signatures (Setvák et al. 2010; Bedka et al. 2015;

Homeyer et al. 2017), and

6) anomalous storm motion relative to other nearby

storms (e.g., ‘‘a right mover’’) indicating a strong

likelihood of a rotating updraft and supercell storm

(Lindsey and Bunkers 2005).

Severe storms often evolve rapidly, developing from

fair-weather cumulus to cumulonimbus clouds spanning

the depth of the troposphere and producing damaging

wind, hail, or tornadoes in as little as 1 h (e.g., Koch et al.

2016). However, in many regions of the world, GEOsat

imagers observe at 15-min intervals. This sampling fre-

quency when coupled with the additional time required

to access the imagery, compute derived products, and

display and analyze the imagery/products can be in-

adequate for exploiting the above signatures to improve

severe weather forecasting. Higher temporal resolution

imagery can help one to better observe these processes,

enhancing the utility of satellite data in the forecast

process.

b. GOES Super Rapid Scan observations

Beginning in the summer of 2012, the GOES-14 sat-

ellite operated in Super Rapid Scan Operations for

GOES-R (SRSOR) mode. It collected imagery at 1-min

intervals to help the community prepare for the in-

creased temporal resolution of the GOES-R series

Advanced Baseline Imager (ABI) imagery (from 30 s

to 1min; Schmit et al. 2005, 2014). Prior to the first

GOES-14 SRSOR, 1-min imagery was only collected

for a few days during preoperational satellite checkout

periods or for limited time periods during high-impact

weather events such as tropical cyclones. TheGOES-14

SRSOR periods typically persisted for several weeks

and provided sustained observations of diverse natural

phenomena including wildfires, snowstorms, tropical

cyclones, and severe convection.

The benefits of super rapid scan imagery were quickly

recognized by the forecasting and research communities.

GOES-14 SRSOR imagery helped National Oceanic and

Atmospheric Administration (NOAA)/Storm Prediction

Center forecasters better recognize newly developing

convection and issue severe weather watches, and better

identify areas of persistent overshooting cloud top (OT)

activity where severe weather is concentrated (Line et al.

2016). SRSOR imagery was used to identify rapid cloud-

top temperature and updraft intensity changes within

OTs that preceded reports of damaging winds, hail, and

tornadoes (Schmit et al. 2014; Bedka et al. 2015). The

imagery also enabled the development of cloud-top di-

vergence and vorticity products derived from mesoscale

atmospheric motion vectors that indicate updraft accel-

eration and rotation preceding large hail and tornadoes

(Apke et al. 2016, 2018), which were not possible to

derive with previous-generation 15–30-minGOES-8–15

data. In March 2017, preliminary GOES-16 ABI imag-

ery became available in order to introduce forecasters to

this new data prior toGOES-16 becoming operational in

late December 2017. The 30-s to 1-min imagery of

convection has been routinely collected by GOES-16,

providing new opportunities for improved diagnoses

and predictions of severe storms.

c. Above-anvil cirrus plumes: Identification and
storm severity

Super rapid scan imagery enables early identification

of the above-anvil cirrus plume (AACP) signature.

Intense tropopause-penetrating updrafts, commonly

referred to as OTs, in storm-relative wind environ-

ments favoring gravity wave breaking leads to cirrus

plumes that can reside several kilometers above the

primary anvil (Wang 2003; Setvák et al. 2013; Homeyer

et al. 2017). The lofting of cloud material during a wave

breaking event is consistent with the early physical

descriptions of cloud-top evolution during plume for-

mation by Fujita (1982), where it was given the name

‘‘jumping cirrus.’’ The height differential and differing

ice microphysics between the AACP and primary anvil

combine to generate unique texture that allow AACPs

to be readily identified in visible wavelength imagery.

AACPs often cast shadows on the primary anvil near

sunset, which provides an additional indication of their

occurrence in visible imagery. A GOES-16 visible im-

age of two storms over Argentina in Fig. 1a shows this

AACP texture. The northern storm produced hail over

18 cm (;7 in.) in diameter in Córdoba, Argentina, near

the time of this image (Cappucci 2018). The severity of

the southern storm is unknown.

In many situations, the AACP adjusts to the ambient

temperature of the lower stratosphere, causing the

AACP infrared (IR) brightness temperature (BT) to be

warmer than the underlying anvil, most notably in areas

adjacent to the OT updraft region. The warmAACPBT

contrasts sharply with the cold OT that is continuously

reinforced by rapidly rising air that cools upon ascent

due to adiabatic expansion. The AACP warm anomaly

1160 WEATHER AND FORECAST ING VOLUME 33



is often embedded within a U-, V-, or ring-shaped area of

colder temperature emanating from the primary anvil.

These features have been referred to in previous studies as

the enhanced- (or cold) U, V, or ring signatures (Adler

et al. 1983;McCann 1983; Brunner et al. 2007; Setvák et al.
2010; Homeyer 2014; Bedka et al. 2015; Homeyer et al.

2017). AACP IR BT patterns can be more complex than

these signatures and further observational andmodeling

studies are required to fully understand why a storm

appears as it does at a particular time. For example, the

AACP from the Córdoba storm in Fig. 1b is colder than

its primary anvil, whereas the southern storm in this

image has an AACP that is warmer than the anvil, re-

sulting in an enhanced-V signature. These complexities

will be discussed in detail in section 3a.

Many studies have noted the presence of AACPs,

enhanced Vs, or cold-ring signatures in the vicinity of

severe weather using operationally available GEOsat

or low-Earth-orbiting imagery (McCann 1983; Brunner

et al. 2007; Pú�cik et al. 2013; Kunz et al. 2018). Using

GOES-3 imagery collected at 30-min intervals, McCann

(1983) found that an enhanced-V signature appeared

30min on average in advance of severeweather.GOES-14

Super Rapid Scan imagery enables more precise de-

termination of AACP timing relative to observed severe

weather. Manual identification of 58 AACP-producing

cells occurring during the 2012 GOES-14 SRSOR period

showed that 57% of the AACP cells were severe (Bedka

et al. 2015). AACPs appeared, on average, 18min before

the storm’s first severe weather report, with manyAACPs

offering greater than 30-min lead time. Severe weather

incidents can go unreported, especially over sparsely

populated regions (Doswell et al. 2005; Verbout et al.

2006; Brotzge et al. 2011). Thus, it is likely that AACP-

producing storms are more often severe than these sta-

tistics suggest.

Significant severe weather outbreaks can feature dozens

of AACP-producing storms, andAACPs have been found

within convection across the globe (Setvák et al. 2013).

McCann (1983) found that storms with enhanced V’s

were associated with 50% of F2 or greater intensity

tornadoes analyzed in his study (76 of 152 storms).

FIG. 1. (a) GOES-16 0.64-mm visible, (b) 10.3-mm IR1visible sandwich composite, (c) 1.61-mm near-IR, and

(d) daytime convection RGB composite imagery of convective storms over Argentina at 2030 UTC 8 Feb 2018. The

sandwich composite method allows for display of both IR and visible imagery in one graphic through the use of the

semitransparency of the IR channel. (Setvák et al. 2013). Locations of two AACPs are outlined by dashed lines, and

overshooting cloud tops responsible for triggering the AACP are identified by white arrows. The northern AACP storm

generated hailstones exceeding 18 cm (7 in.) in diameter in Córdoba, Argentina, near the time of these images.
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Figure 2 shows a random sample of eight signifi-

cant severe storms that generated EF41 tornadoes,

hail of 181 cm (71 in.), or 44.71 ms21 (1001 mih21)

measured wind gusts. An AACP was evident within all

eight storms, including those observed by GOES-7 that

collected IR data at ;10km per pixel resolution over

the central United States, comparable to the imagery

analyzed by McCann (1983). Arrows indicate where the

plume texture andwarm anomalies weremost evident in

visible and/or IR imagery, which are not always directly

adjacent to the severe storm updraft core. Storms with

OTs and no AACP often generate hazards such as

lightning, heavy rainfall, aviation turbulence, and aircraft

engine icing conditions (Bedka et al. 2010; Yost et al.

2018). However, OTs are a ubiquitous feature atop deep

convection throughout the world but severe weather is

quite infrequent relative to the total number of OT-

producing storms. Only a small subset of OTs, those that

penetrate the tropopause .1km within storm-relative

wind environments favorable for gravity wave breaking,

were found to generate AACPs (Homeyer et al. 2017).

Research published to date, coupled with the exam-

ples shown in Figs. 1 and 2, indicates the AACP signa-

ture is one of the strongest indicators of a severe storm

depicted by visible and IR satellite imagery. Despite the

extensive research devoted to the AACP and related

enhanced-V and cold-ring signatures, there is lingering

uncertainty regarding 1) the processes that trigger and

sustain an AACP, 2) how these processes are depicted

by conventional radar and lightning datasets routinely

used in operations, and 3) how can AACP recogni-

tion be used for severe storm forecasting/warning in

conjunction with other conventional data? Although

model simulations have been used in many studies

to understandAACP-producing storm dynamics (Wang

2003;Wang et al. 2016; Homeyer et al. 2017), developing

the link between AACPs, radar-derived storm dynam-

ics, and severe weather has been challenging because 1)

there is no existing database of AACP events that pro-

vides critical details on plume start and end times, in part

because there is no robust, automated way to identify

AACPs, and 2) development of accurate radar-based

cell track datasets over broad geographic regions en-

compassing entire storm lifetimes is challenging.

Severe weather warnings are normally based on in-

ferences of hail, damaging wind, or tornadoes derived

from Doppler weather radars, recently augmented by

dual-polarization observations across the United States.

The U.S. Next Generation Weather Radar (NEXRAD)

network often can directly detect severe weather condi-

tions such as highwinds, high reflectivity, and polarimetric

signatures of hail, as well as the presence of rapid rotation

within storms linked to mesocyclones and tornadoes.

Therefore, a forecaster is often not analyzing satellite

imagery after a storm develops a prominent radar echo.

But there may now be an opportunity for new imagery

and derived products from the GOES-R satellite series

(Schmit et al. 2005; Goodman et al. 2013) and patterns

within this imagery such as the AACP to raise situational

awareness and increase confidence that a storm could be

severe. Given that AACPs occur in many regions without

radar coverage, warnings based on early recognition of an

AACP could help save lives and property.

d. Objectives of this study

In an effort to quantify and better communicate the

significance of the AACP signature, this paper presents

an analysis of 405 AACP-producing storms identified

across 13 severe weather days observed byGOES-14 and

GOES-16 30-s to 1-min super rapid scanning. Over 8000

GOES images were analyzed by a team of human experts

to estimate AACP start and end times at the individual

storm scale. Tracking of both the 405 AACP-producing

storms and over 4000 storms withoutAACPs during their

entire lifetime was accomplished using NEXRAD data

postprocessed with the GridRad system (Homeyer and

Bowman 2017). Through fusion of GridRad and super

rapid scan GOES datasets, severe weather reports, and

National Weather Service (NWS) severe weather warn-

ing information, we will address the following questions:

1) What radar-observed dynamical processes trigger

and sustain an AACP?

2) What is unique about AACP storms relative to non-

AACP storms?

3) What is the severe weather frequency for AACP

storms compared to non-AACP storms?

4) Are certain severe weather types more likely to be

produced by AACP storms?

5) How far in advance doAACPs occur ahead of severe

weather?

6) What is the relationship between AACP storms and

supercells? What is unique about supercells that do

not produce AACPs?

7) How can severe weather warning be augmented by

knowledge of the presence of an AACP?

Section 2 will describe the datasets and methods used in

this study, section 3 will present results, and section 4

will discuss and summarize the findings.

2. Datasets and methods

a. GridRad data

NEXRAD level II (i.e., volume) data were retrieved

from the National Centers for Environmental In-

formation (NCEI) for the 13 events described in Table 1.
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FIG. 2. GOES visible and IR images of significant severe storms over the United States: (a) 28 Aug 1992, Plainfield, IL, EF5 tornado;

(b) 26 Apr 1991, Andover, KS, EF5 tornado; (c) 23 Jun 2003, Aurora, NE, 18-cm (7 in.) hail; (d) 23 Jul 2010, Vivian, SD, 20-cm (8 in.) hail;

(e) 17 Jun 2010, Eagle Butte, SD, 47.8m s21 (107mi h21) measured wind gust; (f) 31 May 2013, El Reno, OK, EF3 tornado; (g) 27 Apr

2011, Hackleberg, AL, EF5 tornado; (h) 22 May 2011, Joplin, MO, EF5 tornado; (i) 19 Jul 2017, Polo, SD, 44.7m s21 (100mi h21)

measured wind gust; and (j) 29 Apr 2017, Canton, TX, EF-4 tornado. Observations are fromGOES-7 in (a) and (b),GOES-13 in (c)–(h),

and GOES-16 in (i) and (j). The arrows identify where IR warm anomalies or textures within plumes were most evident.
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The NEXRAD network consists of more than 100

WSR-88D S-band (10–11-cm wavelength) radars that

observe clouds and precipitation on a polar grid in range,

azimuth, and elevation relative to the location of the ra-

dar. All NEXRAD observations used in this study were

obtained at a range resolution of 250m, an azimuthal

resolution of 0.58 for the lowest 3–4 elevations and 1.08
otherwise, and typically at 14 elevations per volume. The

radar data were processed using the four-dimensional

space–time merging methods described by Homeyer and

Bowman (2017, and references therein), which provide

volumes of the radar variables at 2-km horizontal reso-

lution, 1-km vertical resolution, and 5-min temporal res-

olution over the extent of each GOES Super Rapid Scan

domain. This radar dataset is referred to as GridRad and

more information on the dataset is available online

(http://gridrad.org). A three-dimensional rendering of a

GridRad radar reflectivity volume featuring hailstorms

over north Texas (corresponding to the GOES-16 image

in Fig. 4d) is shown in Fig. 3. Three distinct updrafts co-

incident with the coldest GOES-16 IR BT are evident

(Fig. 4d), with the southernmost being the deepest and

composed of 60-dBZ echoes that reach an 11-km altitude.

Analyses of all datasets on an individual storm (i.e.,

‘‘cell’’) basis in this study was facilitated through ob-

jective radar-based storm tracking. Individual storm

tracks were computed throughout each event using an

echo-top algorithm described by Homeyer et al. (2017).

For this study, tracking is accomplished through time

linking of 40-dBZ echo-top maxima, filtered by the

convective echo classification output by the Storm La-

beling in 3 Dimensions (SL3D) algorithm (Starzec et al.

2017). The objectively tracked storms were reviewed to

manually identify and merge discontinuous tracks that

correspond to the same storm. Comparisons of GridRad

storm tracks with those from the NOAA Severe

Weather Data Inventory (SWDI; section 2d) show

consistent results (e.g., see Fig. 3 in Homeyer et al.

2017). The quality-controlled storm tracks were then

used to extract maximum (or minimum in the case of IR

temperature) values from each dataset within a 10-km

radius of the storm location at 1-min intervals, with

observations made at a coarser resolution than 1-min

interpolated linearly in space and time to the storm

track location. Additional details on the object tracking

and data fusion approach are provided by Homeyer

et al. (2017) and T. Sandmæl et al. (2018, unpublished
manuscript).

Supercell storms were identified using GridRad ob-

servations for all 13 severe weather days via a combi-

nation of objective and subjective methods (Sandmæl
2017). First, potential supercell storms were objec-

tively identified by searching for storm tracks with
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long duration ($60min); strong azimuthal shear (or

rotation, .3.5 3 1023 s21), which helps to discriminate

between nonrotating or weakly rotating storms and su-

percells (e.g., see Fig. 3 in Sandmæl et al. 2018); and tall

40-dBZ echo tops ($12km during any point in a storm’s

life cycle). Objectively selected candidate storms were

then subjectively evaluated to confirm or deny super-

cellular characteristics. In particular, in order to

classify a storm as a supercell, the following conditions

were sought: 1) obvious deviant motion relative to

neighboring storms, 2) a hook echo at altitudes # 3 km,

3) a bounded weak-echo region apparent in upper-level

maps or vertical sections of radar reflectivity, or 4) po-

larimetric signatures such as the differential reflectivity

arc at low levels (Fujita 1958; Browning and Donaldson

1963; Lemon and Doswell 1979; Doswell and Burgess

1993; Kumjian and Ryzhkov 2008). If at least two of

these conditions were met, the storm was categorized

as a supercell. This classification method identified 194

supercells across the 13 events. This method may miss

some weak supercells as well as supercells embedded

within organized convective systems, but all tornadic

storms and AACP-producing storms (regardless of

whether or not they passed the initial objective duration,

shear, and tall echo-top identification) were evaluated to

confirm supercell or nonsupercell characteristics.

b. GOES observations

GOES-14 and GOES-16 imagery collected at intervals

from 30-s to 1-min were acquired from the University

of Wisconsin–Madison Space Science and Engineering

Center using the Man computer Interactive Data Access

System (McIDAS-X) software package (Lazzara et al.

1999). GOES-16 collects these rapid observations when

operating in ‘‘flex mode.’’ While in flex mode, GOES-16

can observe two geographically distinct domains every

minute, or a single domain every 30s, while also observing

a contiguous United States (CONUS) domain at 5-min in-

tervals and hemispheric ‘‘full disk’’ domain at 15-min in-

tervals. Portions of the 28 March, 5 April, and 16 May 2017

events were observed at 30-s intervals, but this did not bias

the analyses as 1-min data are sufficient for AACP identifi-

cation. Over 8000 GOES images were analyzed to find all

AACP signatures that occurred throughout the 13 events.

The 1-min or better imagerywill be referred to generically as

‘‘super rapid scan imagery’’ for the remainder of this paper.

It is possible to identify AACPs in 5–30-min data collected

by previous- and current-generation GEOsats. However,

1-min super rapid scan data are optimal for 1) identifying

plumes, which can sometimes be subtle and short lived

(see Fig. 5 to be discussed later), and 2) determining the start

and end times of plume production for comparison with

radar- and lightning-derived products, severe weather re-

ports, and severe weather warnings.

GOES-16 datasets include 0.5 km per pixel 0.64-mm

visible channel imagery, 2 km per pixel 10.3-mm channel

IR window channel imagery, and a quantification of

texture evident in OT regions in visible imagery (Bedka

and Khlopenkov 2016). For the 29–30 June 2017 event,

10.3-mm channel data were unavailable so the 11.2-mm

channel was used instead. The 11.2-mm channel is

slightly more sensitive to water vapor than the 10.3-mm

channel ‘‘clean window,’’ but the signature of an AACP

is essentially the same in these two channels. The

GOES-16 imagery analyzed in this paper is considered

‘‘preliminary and preoperational’’ because it was col-

lected during a year-long postlaunch testing phase. Al-

though the data were preliminary, they were still of high

quality and suitable for AACP identification. GOES-14

datasets include 1 km per pixel 0.65-mm visible channel

imagery and 4km per pixel 10.7-mm channel infrared

window channel imagery. Although Fig. 2 shows that

AACPs could be identified even in 101 km per pixel

GOES-7 imagery, the higher spatial detail provided

by GOES-16 enables more reliable AACP identifica-

tion. Image resolution would not impact identification

of a prominent AACP, but some subtle AACPs of un-

known number may have been missed in the GOES-14

analyses.

c. Earth Networks Total Lightning Network

The Earth Networks Total Lightning Network

(ENTLN) detects lightning using pulses in vertical elec-

tric field measurements from parts of the 1-Hz–12-MHz

FIG. 3. A 3D volume rendering of GridRad reflectivity at

horizontal polarization for three hailstorms over north Texas at

2230 UTC 18 May 2017, corresponding to the GOES-16 image

shown in Fig. 4d. A vertical slice through the updraft of the

southernmost cell shows that high reflectivity values corresponding

to graupel and/or hail (60 dBZ; red) reach up to 11 km in altitude

within the intense updraft core.
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FIG. 4. A time series of GOES-16 visible and IR temperature images throughout the lifetime of a long-lived supercell storm in north-

central Texas. Images are centered on the primary updraft core of the storm as it moved eastward and generated several instances of

severe hail up to 6.4 cm (2.5 in.) in diameter, damaging wind, and an EF1 tornado, denoted by colored boxes [see legend in (a)]. Severe

weather reports from other storms in the domain are also denoted. Visible images are provided (a) at 2205 UTC, the time when the first

AACP was generated by these storms; (h) at 2330 UTC, the middle of the storm lifetime when the AACP was warmest; and (l) at

0100 UTC, near sunset. A variety of features in the images are annotated with numbers 1–9 and discussed in the text. Solid lines indicate

AACPs that are being actively generated at the time of the image. Dotted lines indicate residual plume material from older updrafts that

have decayed.
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frequency range from over 700 sites across the contiguous

United States (Liu andHeckman 2010). Individual pulses

are located in space and time by statistically solving

overdetermined electrical signal time-of-arrival equa-

tions using measurements from at least five stations.

Sources close together in space and time are grouped into

flashes, which are accumulated in 1-min intervals into

0.088 3 0.088 longitude–latitude density grids (an area

of ;64km2) to emulate what could be provided by the

GOES-16 Geostationary Lightning Mapper (Goodman

et al. 2013) once the data become fully operational. The

maximum of the total lightning flash rate was extracted

along each storm track for analysis in this study, which

consists of both cloud-to-ground and intracloud flashes.

d. North American Regional Reanalysis

The North American Regional Reanalysis (NARR)

is a 3-hourly product produced by the NOAA/National

Centers for Environmental Prediction (NCEP) with a

32-km horizontal grid spacing and 45 vertical layers

covering the period from 1979 to the present (Mesinger

et al. 2006). NARR data are used to define the tropo-

pause temperature and height in order to normalize

GOES IR BTs and GridRad echo-top heights across the

13 events analyzed in this study. Although the authors

are not aware of a publication discussing the accuracy of

NARR tropopause estimates, a recent analysis of the

ERA-Interim tropopause relative to radiosondes

showed that;77% of heights agree within60.5 km, and

;91% of points agree within61 km (comparable to the

vertical resolution of the model; Solomon et al. 2016).

Similar accuracy is provided by the NCEP Global Fore-

cast System and appears to be a common characteristic

of numerical models (Homeyer et al. 2010). The NARR

most unstable convective available potential energy

(CAPE) and effective bulk shear (e.g., Thompson et al.

2007) are used to characterize instability and wind shear

environments near nonsevere non-AACP storms, severe

non-AACP storms, supercells, and AACP storms.

e. NCEI Severe Weather Data Inventory

The NCEI hosts the SWDI storm event database

that contains the time, duration (if available), location,

magnitude, and source of all confirmed U.S. severe

weather reports. Avenues of reporting include but are

not limited to NOAA/NWS storm surveys, trained

spotters, and law enforcement. This study uses the

SWDI reports to define severe weather events. While

other report databases exist such as from the NOAA/

SPC, the SWDI undergoesmore rigorous quality control

and contains more report sources than other databases.

For this analysis, SWDI reports are linked with storm

tracks if they occur within 10km of a storm’s location at

the time the report is valid.

Although the NCEI database provides the most com-

prehensive account of historical severe weather events in

the United States, well-established reporting biases in-

herent to the database influence the severe weather re-

lationships and lead time presented in this study (Doswell

et al. 2005; Trapp et al. 2005, 2006; Verbout et al. 2006;

Brotzge et al. 2011). Fewer reports are available in

sparsely populated areas and during nighttime hourswhen

most people are asleep. An unreported severe weather

event could artificially decrease statistics defining how

often severe weather is generated by AACP (and non-

AACP) storms, and also inflate the time interval that an

AACP appears before severe weather. Use of radar-

derived severe weather indicators such as the maximum

expected hail size (MEHS; Witt et al. 1998) or rotation

tracks (Smith et al. 2016) could be used as a stable and

more unbiased proxy for severe reports. Analysis of

AACP storms with respect to these proxies is a topic of

ongoing work by the authors of this paper.

f. National Weather Service Severe Weather Warning
Archive

NWS severe thunderstorm and tornado warnings are

used to determine if advanced notice of severe weather

could be provided by AACP appearance prior to warning

issuance time. These data were obtained through an online

archive, hosted by the Iowa Environmental Mesonet

(IEM), which is a volunteer effort based out of Iowa State

University (Iowa State University 2018a). The database

includes the time of issuance, time of expiration, and

FIG. 5. AACP production duration per storm, expressed in terms of

frequency relative to the total population of 405 AACP storms.
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coordinates of the polygon for each severe thunderstorm

and tornado warning issued by the NWS. Warnings were

linked with storm tracks if the storm passed through the

polygon during valid warning times (i.e., any time between

issuance and expiration). Most warnings also feature a

maximumwind gust and/or hail size ‘‘tag’’ expected during

the warning time period, if wind or hail were expected to

occur. No information on expected intensity of a tornado

via the EF scale is provided.

g. Plume identification

GOES visible and IR imagery were animated and

analyzed using the McIDAS-V software package

(Achtor et al. 2008) to determine the starting and ending

time of AACP production by an individual storm up-

draft. AACP identification was based on IR imagery and

supplemented by visible imagery when available. The

identification process was subjective, guided by the ex-

tensive image analysis experience of the authors de-

scribed by Setvák et al. (2013), Homeyer (2014), Bedka

et al. (2015), and Homeyer et al. (2017). Discussion on

AACP temporal evolution and challenges associated

with their identification is provided in section 3a. Over

70% of AACPs were generated for less than 1h but

eight storms (;2% of the population) produced a con-

tinuous AACP for more than 4h (Fig. 5). The distribu-

tion of AACP duration is similar to the enhanced-V

events analyzed by McCann (1983).

h. Analysis methods and data fusion

The 13 events analyzed in this study featured some of

themost diverse andwidespread severe storms observed

by GOES in super rapid scan mode. These events in-

clude all types of severe weather and convective modes

including weak (or shallow) convection, discrete cells

and supercells, squall lines, and mesoscale convective

systems. In total, 4503 severe weather reports were col-

lectedwithin the geographic domains observed byGOES

super rapid scanning. These reports include 28 EF2 tor-

nadoes, 257 wind gusts of 33.41 ms21 (74.81 mih21),

and 522 reports of 5-cm- (21 in.) diameter hail (see

Table 1), denoted in the text as ‘‘significant severe

weather’’ reports (Hales 1988). Two events (21–22 May

2014 and 19–20 July 2017) were selected because of the

presence of exceptionally long-lived supercells, while

the remaining events featured more widespread severe

weather. We had limited knowledge of the satellite-

observed characteristics of severe storms during these

events. Any knowledge of the cases prior to completing

the analysis was derived from cursory glances at GOES

imagery at random times during some of these events,

which did not bias our event selection or artificially en-

hance the AACP–severe weather relationships.

GridRad storm track data are used to identify the

storm cell ID number corresponding to the AACP-

producing updraft. Satellite imagery of convection can

be complex, especially when rapid storm decay and

generation of a new cell occurs in close proximity, both

in an area of cold IR BT. Therefore, it is sometimes

difficult to ensure that one is monitoring the same cell

in a sequence of images. Understanding updraft, cloud-

top height, and severe weather characteristics before,

during, and after an AACP represent some of the core

science goals of this study, so ensuring that we correctly

associate an AACP with its parent updraft is critical.

Pairing the GridRad storm tracks with GOES data re-

duces uncertainty. GridRad storm tracks were corrected

for parallax based on the 10-dBZ echo-top height for col-

location with GOES data. A variety of GOES, Grid-Rad,

and ENTLN parameters were accumulated at 1-min

intervals within 10km of the storm track, and the most

extreme value (maxima for most parameters except IR

temperature) were recorded for analysis.

Plume lifetime was determined by identifying the sus-

tained emission of warm and/or textured cloud material

from an OT region along the same GridRad storm track.

AnAACPmust be produced continuously for 101min to

be considered in this analysis. GOES data must be avail-

able throughout the lifetime of the storm for an AACP to

be included in the database, thoughGOES image outages

of up to 5min were accepted. Occurrences of an AACP-

producing cell changing ID number due to brief cell

decay, splitting, or other complex reasons were noted.

Most cells continuously produce an AACP for a period of

time and then decay or, in the case of a supercell, split into

two cells thatmay each produce their ownAACP. In some

situations, a cell will produce an AACP for some time,

then production stops while a strong radar echo persists.

The cell can then restart plume production at some later

time. All time periods of active plume production are

noted in these instances. When updraft cores are close to

one another and rapidly evolving, as often occurs in me-

soscale convective systems (MCS), cell IDs may change

more frequently than would otherwise be expected.

AACP production can be brief in these instances and

challenging to link to an individual GridRad storm track.

It is typically clear when plume production stops. In

particular, an OT region disappears and the warm, tex-

tured AACP detaches from the OT and advects down-

stream. An AACP and associated warm anomaly (if

present) can be evident for several hours after pro-

duction ceases (see Figs. 4a,b), but postproduction per-

sistence is not of interest to this study. As described by

Smith et al. (2017) andHomeyer et al. (2017), theAACP

eventually sublimates, leading to significant increases in

upper troposphere–lower stratosphere (UTLS) water
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vapor that, when aggregated across many events, can

measurably impact stratospheric composition (see

Anderson et al. 2017 and references therein).

A total of 405 AACP-producing storms were tracked

across the 13 events in addition to 4178 other non-AACP

storms. GOES- and GridRad-derived characteristics of

AACP storms before, during, and after AACP pro-

duction are extracted for analysis. Examples of AACP

and non-AACP storm tracks and severe weather reports

for 4 of the 13 events are shown in Fig. 6. Severe weather

frequency and type throughout AACP storm lifetimes is

also evaluated and contrasted with non-AACP storms.

Relationships between AACPs and supercells are also

derived to determine if the AACP can be used to

identify a supercell and to contrast supercells with and

without AACPs. Finally, the timing of AACP appear-

ance relative to the first severe weather report and first

NWS severe thunderstorm or tornado warnings is calcu-

lated. The relationship between AACPs, NWS warnings,

and significant hail is also explored to determine if an

AACP detection could increase warning confidence that

significant hail will occur.

3. Results

a. AACP characteristics and temporal evolution

Experience with AACP identification during this study

indicates that most AACPs can be identified by warm IR

BTs and visible texture, but anAACP is not always warm

throughout its lifetime and BT/texture patterns can be

quite complex with storm tops. The Córdoba storm in

Fig. 1 features an AACP BT about 18K warmer than the

OT minimum BT in pixels directly adjacent to the OT

(yellow pixels). Heymsfield et al. (1983) hypothesized

FIG. 6. GridRad AACP (black) and non-AACP (white) storm tracks for (top left) 11–12 May 2014, (top right)

27–28 May 2015, (bottom left) 5–6 Apr 2017, and (bottom right) 16–17 May 2016, overlaid with SWDI severe

weather reports (colored circles; see legend in top-left panel).
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that warming adjacent to the OT was generated by sub-

sidence along the descending branch of a breaking gravity

wave, which he called the ‘‘close-in warm area,’’ a sig-

nature also evident in Figs. 4g and 4h. Fujita (1974) re-

ferred to this area as the ‘‘warm trench.’’ Much of the

AACP that extends over 150km to the east of the

northern Córdoba storm is as cold as the surrounding

tropospheric anvil. The southern storm features a com-

parable anvil temperature and anOTminimumBT that is

only 2.5K warmer than the northern storm, but with a

warmAACP rather than cold. The AACP visible texture

in the northern storm is more prominent, which suggests

increased cloud optical depth and/or height penetration

above the anvil. The rawinsonde temperature profile in

the UTLS layer is complex, with evidence of several in-

version layers above 12km (University of Wyoming

2018). Matching the temperature of an AACP with the

rawinsonde temperature yields highly uncertain height

estimates for these two storms; the northern hailstorm

AACP (210-K BT) would be assigned either a 15.4- or

20-km altitude and the southern storm (218-K BT) would

be assigned either 12.6 or 23.5km. The difference in

AACP orientation, from northwest to southeast in the

northern storm and from southwest to northeast in the

southern storm, is caused by the deviant right motion of

the southern storm (i.e., a ‘‘right moving’’ supercell),

whereas the northern storm exhibits deviant left motion

(i.e., a ‘‘left moving’’ supercell). These differing cell mo-

tions induce different storm-relative wind and outflow

patterns, and perhaps also different gravity wave dynamics

that could affect the IR BT pattern in each storm (Lindsey

and Bunkers 2005).

Figure 4 shows an annotatedGOES-16 time series of a

long-lived supercell, centered on the supercell OT re-

gion, that exemplifies the complex evolution of severe

storm cloud tops. At 2205 UTC (Figs. 4a,b), a residual

AACP generated by a previous updraft (region 1) is

evident via visible texture and warm BT. Two new

AACPs are being generated at this time (regions 2 and

3). The storm that generates the region 2 AACP is the

primary storm of interest in subsequent panels. The cold

‘‘arms’’ of an evolving enhanced-V pattern are denoted

by regions 5 and 6. The arms are caused by anvil-level

(15-km altitude) wind flow that is forced around the OT

region that has a peak GridRad 10-dBZ echo-top height

of 18–19 km (not shown), similar to what occurs with

wind flow around isolatedmountain peaks (Smith 1980).

Air is forced upward slightly because of the interaction

with the OT obstacle, causing colder IR BTs in the arms

than the downstream anvil.

At 2215 UTC (Fig. 4c), the updraft that had generated

the AACP in region 3 decayed and residual warm cloud

moved eastward. Another updraft developed behind

region 3 that also generated a short-lived AACP (region

4). Region 1 became slightly colder and continued to

move eastward. The arms of the enhanced V continued

to grow and some cold cloud from the region 6 arm

wrapped around to the north of the region 2 AACP

(region 7). The region 6 enhanced-V arm converged

with the decayed OT that generated the region 3 AACP

(magenta color). Hail was reported in this area near

2230 UTC (Fig. 4d). The region 2 and 4 AACPs con-

tinued to grow at 2230 UTC. The region 3 AACP

maintained its warm BT. The region 1 AACP is difficult

to track as it is overtaken by the large region 2 AACP.

At 2245 UTC (Fig. 4e), the OT that generated region 4

decayed, leaving warm cloud that moved northward.

Region 7 became slightly colder at 2245 UTC and was

overtaken by region 2 at 2300 UTC (Fig. 4f).

At 2330 UTC, the area of coldest cloud was elongated

from east to west (Fig. 4g). The supercell split prior to this

image and generated a left-moving cell (region 8, magenta

IRBT) that later became reabsorbed by the primary storm

after 0030UTC. Cold cloud in the southern arm (region 5)

persisted and seemingly diverted the region 2 AACP.

Plume cloud along the eastern edge of the domain is cold.

Areas of northwest–southeast-oriented transverse banding

(Lenz et al. 2009) comprise the warm portion of the

AACP. The warmest BT within the AACP’s lifetime oc-

curred at this time. It is unclear why the temperature is so

warmwithin the banded cloud, but itmay indicate stronger

lofting of cirrus during a wave breaking event.

At 0000 UTC, a second surge of cold cloud develops

on the southern arm (region 9) but, unlike region 8, is

not associated with a convective core in radar observa-

tions. The precipitation structure of the primary cell

continued to elongate at 0030 UTC but the highest echo

top (18–19 km) remained on the eastern edge where the

region 2 AACP was continuously generated. The region

5 arm became indistinguishable within region 2. At

0100UTC, the region 2AACP becomes entirely cold for

unknown reasons.

Hypotheses for cold AACPs include 1) sedimentation

of large ice crystals that reduces the cloud optical depth,

allowing a colder tropospheric anvil beneath the AACP

to dominate the radiative signal; 2) AACP injection into

nearly isothermal UTLS environments or above-anvil

layers that are cooling with height; 3) plume subsidence

into layers with colder temperature; and/or 4) cooling of

the local UTLS temperature throughAACP sublimation.

From our experience, a storm rarely produces only a cold

AACP. That is, an AACP is warm in some portion of the

plume, especially adjacent to the OT, or at some point

during the storm lifetime. At night, there is increased

uncertainty in the AACP duration of unknown magni-

tude given the absence of visible imagery. An AACP is
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identified at night in this study by identifying a warm area

adjacent to the OT and a narrow corridor of ‘‘plume

shaped’’ outflow that is continuously emitted from the

OT region. AACP production ends when the OT dissi-

pates, and the outflow channel is no longer being actively

emitted. Figure 4 and the Córdoba storm (Fig. 1) dem-

onstrate that severe weather can be generated by a storm

regardless of AACP temperature. These cases and many

others throughout the literature illustrate the many

challenges associated with physical interpretation of

AACP BTs and the benefits of super rapid scan, multi-

spectral imagery for plume identification.

Previous studies indicate that some AACPs are more

reflective than the primary anvil in near-IR (;1.6 and

2.2mm) and shortwave-IR (;3.9mm) imagery, suggest-

ing that they are composed of small ice crystals (Setvák
and Doswell 1991; Levizzani and Setvák 1996; Rosenfeld

et al. 2008). A 1.6-mm image of the two aforementioned

Argentina storms (Fig. 1c) shows no evidence of en-

hanced reflectance within their AACPs. The AACPs

feature the same color shading in this image as the

anvil, which suggests comparable particle size. The

EUMETSAT severe convection red–green–blue (RGB)

approach (EUMETSAT 2018; Fig. 1d) combines in-

formation from visible, near-IR, water vapor absorption,

and IR window channels to emphasize severe convection

with strong updrafts and small ice particles. Enhanced

3.9-mm reflectance due to small ice crystals would

produce a yellow color in this RGB composite. The OT

regions in both Argentina storms do exhibit a yellow

color, but no yellow or small ice crystals are found within

the AACPs. Further research is required to better un-

derstand variations in AACP microphysics depicted by

these satellite observations.

b. NEXRAD, ENTLN, and GOES-derived
properties of AACP and non-AACP storms

A set of GOES, ENTLN, and GridRad-derived pa-

rameters for AACP and non-AACP storms are ana-

lyzed here to show differences between the two storm

populations, and the evolution of these parameters

within periods before, during, and after AACP pro-

duction. The analyses are presented in the form of box-

and-whisker diagrams shown in Figs. 7 and 8 . GridRad

echo-top heights and GOES IR BTs are normalized by

the tropopause height or temperature to enable com-

parison across the 13 storm events included in this study.

The GridRad storm peak 10-dBZ echo top (Z10-dBZ;

Fig. 7a) approximates the height of the physical cloud

top (Cooney et al. 2018), and Z10-dBZ will reach or ex-

ceed the tropopause height only in the presence of

convective updrafts. The median Z10-dBZ during AACP

production is ;1.5 km higher than during non-AACP

storms. Severe non-AACP storms also have slightly

higher tops (0.5 km) compared to nonsevere cells, but

this difference is within the 1-km uncertainty of the

GridRad product. AnAACP storm at times prior to and

also after AACP production is largely indistinguishable

from a non-AACP severe storm.As expected, theZ10-dBZ

rises as a plume is generated and drops after the plume is

no longer produced. The whiskers of the distribution

show that non-AACP storms can reach comparably ex-

treme Z10-dBZ values relative to AACP storms. This in-

dicates that high cloud tops alone are not necessarily a

good discriminator of intense and severe convection, a

conclusion supported by similar results from GOES IR

BTs (Fig. 8c). The cloud tops of storms with trackable

(i.e., temporally persistent) 40-dBZ echoes often reach

and penetrate the tropopause, but AACP storm updrafts

penetrate the tropopause by a greater margin. A quarter

of the echo-top distribution is below the tropopause

during AACP production, which could be due to a com-

bination of 1) brief updraft decay and plume cessation

embedded within what appeared to be a long-duration

plume to the human analysts and/or 2) Z10-dBZ

uncertainty determined to be on the order of 1km

(Cooney et al. 2018).

Additional inferences of updraft intensity are pro-

vided by the GridRad Z40-dBZ and upper-level (altitude

of 81 km) radial divergence, as well as lightning flash

rate. Since terminal velocities increase with increasing

particle size, high Z40-dBZ within a storm implies stron-

ger vertical velocities than storms with lower Z40-dBZ

(in a relative sense) because strong velocity is required

to loft large hydrometeors to high altitudes. Strong ra-

dial divergence also indicates rapid outflow from an in-

tense updraft. TheZ40-dBZ for severe non-AACP storms

is higher than that from nonsevere, non-AACP storms

by a greater margin than what is depicted by the Z10-dBZ

field. This further suggests that updrafts in severe storms

are stronger than nonsevere storms (Fig. 7b). Periods

prior to and after AACPs are again similar to non-

AACP severe storms in terms of Z40-dBZ and, to a lesser

extent, radial divergence (Fig. 7c). These results suggest

that the updraft accelerates as an AACP is produced, as

evidenced by the 2–3-km increase in median Z40-dBZ

during AACP production. Severe AACP storms are of

exceptional intensity based on Z40-dBZ and divergence

metrics. ENTLN lightning flash rates within AACP

storms are about double the rate of that from non-

AACP storms (Fig. 8a). Lightning has been shown to

increase significantly prior to severe weather in previous

studies, termed a ‘‘lightning jump’’ (Schultz et al. 2009,

2011). Enhanced flash rates for AACP storms are not

surprising given the sharp rise of Z40-dBZ that occurs

when an AACP is present, and the fact that the Z40-dBZ
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and 40-dBZ volumes in the mixed-phase region are

highly correlated with lightning flash rate (Deierling and

Petersen 2008; Liu et al. 2012).

GridRad indicators of updraft rotation at both low

(1–3-km altitude; Fig. 7e) and upper levels (altitude of

81km; Fig. 7d) show interesting distributions when

analyzed across the six categories discussed above.

Nonsevere, non-AACP storms have the weakest rotation

and severe, non-AACP storms have an increasing tendency

for greater rotation. Similar to the findings above, the time

periods before and after an AACP look quite similar to

those of a severe non-AACP storm. But contrary to the

above, where echo-top height and divergence increased

when an AACP formed regardless of storm severity,

rotation does not increase during AACP production for

nonsevere storms. Only severe AACP storms exhibit a

significant rotation enhancement. The product of upper-

level rotation and divergence (Fig. 7f) is enhanced where

intense, rotating updrafts are present and best distinguishes

severe from nonsevere AACP storms, consistent with an-

alyses of tornadic storms by Sandmæl et al. (2018).
The storm cell minimumGOES IR temperature is not

significantly different across the six categories of storms

(Fig. 8c). The coldest cloud tops are only ;2K colder

when an AACP is being produced compared to non-

AACP storms or before/after an AACP. This does

provide further indication that updrafts are more in-

tense when plumes are produced, but the small BT

FIG. 7. Box-and-whisker diagrams showing the distributions of tropopause-relative (a) 10- and (b) 40-dBZ GridRad echo tops,

(c) NEXRADmaximum storm cell divergence above an 8-km altitude, (d) maximum NEXRAD low-level (1–3 km) and (e) upper-level

(81 km) vorticity, and (f) the product of the maximum upper-level divergence and vorticity. The columns in each panel, from left to right,

are 1) a non-AACP nonsevere storm, 2) a non-AACP severe storm, 3) the time period during a storm lifetime before anAACP appeared,

4) the time period during AACP production for a nonsevere storm, 5) the time period duringAACP production for a severe storm, and 6)

the time period during a storm lifetime after an AACP was no longer produced. The box shows the 25th–75th percentiles of the data. The

line within the box is the median of the distribution. The whiskers show the 2nd–98th percentiles.
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difference is inconsistent with larger updraft intensity

differences inferred through Z10-dBZ, Z40-dBZ, and radial

divergence. GOES visible texture magnitude, derived

using the Bedka and Khlopenkov (2016) method

within daytime storms, shows differences in inferred OT

penetration through the anvil between AACP and non-

AACP storms that are more consistent with the echo-

top-based metrics (Fig. 8b and Sandmæl et al. 2018).

This demonstrates that many heavily precipitating

storms can have cold cloud tops, but this information

alone does not necessarily provide details about storm

severity or the likelihood to generate an AACP.

Therefore, algorithms that seek to discriminate a severe

storm from a nonsevere storm based on IR temperature

alone will often be ineffective. In a region with numer-

ous storms of comparable IR BTs, one can differentiate

the most intense storms via an AACP coupled with OT

texture evident in visible imagery.

Intense, rotating updrafts are often present in supercells

and, given that AACP storms feature these updrafts, it is

not unreasonable to expectAACPstorms to be supercells.

It is found that 48% of AACP storms were supercells,

based on the methods described in section 2a. This is not

surprising given that AACP storm environments feature

high CAPE and wind shear that is also favorable for su-

percells. Figure 9 demonstrates this similarity, but also

that AACP storms and supercells occur in very similar

environments to severe non-AACP storms. As expected,

nonsevere, non-AACP storms occur inweakerCAPEand

shear environments (black line). Observations of storm

updraft intensity through echo-top height, divergence, and

rotation can better indicate a storm that is more likely to

generate anAACP than environmental conditions.Of the

194 total supercells, 145 (75%) produced an AACP. The

25% of supercells without an AACP had a mean Z10-dBZ

at the tropopause level, whereas the 75% of supercells

with an AACP featured a mean Z10-dBZ 1km above the

tropopause (not shown). Although there is some overlap

in the two populations and some non-AACP supercells

did penetrate the tropopause by 2km, the non-AACP

supercells typically did not penetrate deeply enough into

the stratosphere to generate a discernable AACP.

c. Severe weather analysis

It has been demonstrated that AACP storms are an

especially intense subset of deep convection based on

metrics discussed above. These findings and previous

research strongly suggest they will be more severe on

average than other storms. From a qualitative perspec-

tive, Fig. 6 shows there is often a clustering of severe

weather reports along AACP tracks, especially during

the 11 May 2014 and 16 May 2017 events. The AACP

tracks are normally longer than those of non-AACP

storms, typical of supercells. The 5 April 2017 case is

the most anomalous of the four in that there are many

extremely long-lived AACP storms in the southeast

United States that were associated with very few or no

reports. This area was within a NOAA/SPC zone of

FIG. 8. As in Fig. 7, but featuring (a) ENTLN total lightning flash

rate, (b) tropopause-relative storm minimum GOES IR BT, and

(c) storm maximum GOES visible texture rating using the Bedka

and Khlopenkov (2016) method.
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moderate risk for severe weather. Georgia and South

Carolina were within a high risk area, which is used

to define regions with thermodynamic and wind shear

conditions extremely favorable for severe weather.

While many long-tracked storms with intense updrafts

occurred across this region, confirming the SPC risk

assessment, it was peculiar that there were so few re-

ports from these storms in such a favorable environ-

ment. There were several hail and wind reports from

non-AACP storms across Alabama, Tennessee, and

Kentucky on this day, exemplifying that AACPs cannot

be used to detect all severe weather.

Severe weather relationships for the AACP and non-

AACP storm populations are summarized in Table 2.

Among the AACP storms, 59% generated some form of

severe weather. Hail (tornado) was most (least) likely to

be produced by an AACP storm. The overall low fre-

quency of tornadoes explains this relationship, because,

in general, only a small population of storms with evi-

dence of strong rotating updrafts from Doppler radar

produce a tornado. The relatively small fraction ofAACP

storms compared to the total (405 out of 4583 storms)

generated 57% of all severe weather reports. If normal-

ized by the number of storms in each category, AACP

storms were responsible for 14 times the number of se-

vere weather reports compared to non-AACP storms

(6.33 vs 0.46 reports per storm). Of course, the existence

of a trackable 40-dBZ echo alone would not be a suffi-

cient indicator of a severe storm, and inclusion of a large

population of nonsevere storms decreases the number of

reports per storm in this normalization. When all non-

severe storms are disregarded, AACP storms generated

2.6 times the number of reports per storm than non-

AACP storms (10.8 vs 4.2 reports per severe storm).

Storms that produce significant severe weather are of

greatest threat to public safety and property, and;73%

of these reports are attributed to AACP storms in this

study. Significant hail (88%) and tornadoes (86%) were

most often associated with AACP storms, consistent

with previous knowledge that supercells often generate

AACPs and these hazards (see Duda and Gallus 2010

and references therein). The relationship between

AACPs and significant severe wind is much lower

(41%), which may be attributed to the fact that 1) MCSs

are often responsible for the majority of significant

wind reports, 2) AACPs were found to be shorter lived

in MCSs than in discrete cells, and 3) the short AACP

lifetime and short-lived nature of GridRad cells

within MCSs inhibited similar quality of evaluation

betweenAACPs and severe weather.GOES-16 imagery

from four randomly selected MCS events (Fig. 10)

demonstrates that AACPs were present at the time

of severe wind reports, many of which exceeded

33.4m s21 (;75 mi h21). This suggests that AACPs may

be more common in MCSs than our statistics suggest

and AACPs could help recognize the most intense

regions embedded within organized convective lines/

systems. Trapp et al. (2006) and Edwards et al. (2018)

found that severe wind reports can be biased and/or

misleading, which could also contribute to the reduced

AACP–significant severe wind relationship.

AACPs typically appear in advance of severe weather

reports, suggesting that the presence of a plume could be

used by forecasters to aid in issuing severe weather

warnings. Figure 11 (left panel) shows the distribution of

the time difference between an initial AACP appear-

ance and the first severe weather report from a storm,

referred to here as lead time and based on an assumption

FIG. 9. Distributions of (left) most unstable CAPE and (right) 0–6-km effective bulk shear for AACP storms (blue), supercells (red),

severe non-AACP storms (magenta), and nonsevere, non-AACP storms (black).
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of a maximum (minimum) lead time of 120 (230) min-

utes. The 120-min lead time was chosen because this was

near the maximum provided by an AACP. A 230-min

minimum lead time was chosen to account for situations

when an NWS warning is issued after the first severe

weather report is received. A total of 204 AACP storms

that generated severe weather within this 150-min time

window also had an NWS warning. Nearly 85% of

AACPs appeared before severe weather was reported,

with a mean lead time of 31min. This lead-time distri-

bution looks quite similar to that derived by McCann

(1983, his Fig. 6) using GOES-3 imagery. Of the severe

weather reports, 78% occurred while an AACP was

actively being produced, with the remaining 22% being

split nearly evenly between time periods before or after

AACP production (not shown). These results are con-

sistent with Fig. 7, which demonstrated that updrafts

were strongest within AACP-producing storms and

during the time AACPs were produced, favoring de-

velopment of large hail and tornadoes.

It is also clear from Fig. 11 that the first severe thun-

derstorm or tornado warnings for AACP storms were

issued by the NOAA NWS/well in advance of the first

severe weather reports. It is important to note that al-

though the first warning was issued well in advance of

severe weather, this analysis is not focused on subsequent

warnings (if any were issued) later in the storm lifetime.

The fact that the first warning was issued with relatively

long lead time is not especially surprising given that

radar-derived storm characteristics prior to AACP pro-

duction look quite similar to severe non-AACP storms,

and these characteristics become more indicative of im-

pending severe weather once the updraft intensifies,

lightning flash rate increases, and an AACP is produced.

The lead-time distributions for AACPs and NWS warn-

ings are quite similar with the AACP (NWS) providing a

31- (34) min mean lead time and a 26-min standard de-

viation. Figure 11 (right panel, black line) shows that the

AACP can provide 0–10min of additional lead time, but

in general the first NWS warning is often issued 0–20min

before an AACP appearance, as AACPs preceded the

NWS warning in 25% of the distribution (51 storms).

Lead-time differences are also expressed in terms of

percentage increase (blue line), defined as

percent increase5
1003 (NWS lead time2AACP lead time)

max(NWS lead time, AACP lead time )
.

This statistic accounts for the fact that, for example,

10 additional minutes of lead time provided by an

AACP when severe weather occurs 90min later may

not be as meaningful as 10 additional minutes for a

more imminent severe weather event. AACPs most

often provide only a 0%–10% increase with a small

opportunity for a greater increase. The NWS lead

times are typically much greater on a percentage basis.

Although it is clear the NWS forecasters are often iden-

tifying severe weather indicators using NEXRAD and

other datasets prior to evidence of an AACP, the fact

that the AACP alone can provide comparable warning

lead time to an expert forecaster is a significant finding.

This suggests AACPs can improve situational awareness

and, as a result of this awareness, increase warning

lead time.

Given that 88% of significant hail (51 cm) reports

were attributed to AACP storms, and severe weather

most often occurs while an AACP is actively generated,

knowledge that an AACP is being generated could in-

crease NWS forecaster confidence that a given cell will

produce significant hail. During the 13 severe weather

events studied here, there were 2211 severe thunder-

storm or tornado warnings issued by the NWSwithin the

domains observed by GOES super rapid scanning, 1846

of which featured a ‘‘tag’’ indicating the maximum

expected size of hail if hail is expected to occur. In total,

2338 storms were tagged to produce significant hail

TABLE 2. Severe weather characteristics of AACP storms, differentiated by severe weather type. Note that the fraction of AACP storms

that produced hail, wind, or a tornado (column 2) should not average out to the fraction for any combination of severe weather.

Fraction of AACP storms

that produced the severe

weather hazard (%)

Fraction of severe reports

attributed to AACP storms (%)

Fraction of significant (SIG)

severe reports attributed to

AACP storms (%)

Any combination of severe weather

(N 5 4503, NSIG 5 807)

59 57 73

Hail (N 5 3201, NSIG 5 522) 48 63 88

Tornado (N 5 272, NSIG 5 28) 16 68 86

Wind (N 5 1030, NSIG 5 257) 22 36 41
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(127 storms had at least more than one storm within the

warning polygon). For example, severe thunderstorm

warning text for the storm shown in Fig. 4i is provided

by Iowa State University (2018b), which stated that hail

up to 4.4 cm (1.75 in.) and 26.8m s21 (60mi h21) winds

were expected. The number of significant hail events

included in this analysis increased from 522 (see section 2h

and Table 1) to 765 because we removed the requirement

that GOES imagery must be available for the entire

GridRad storm cell lifetime. We determine what

fraction of NWS warnings with hail tags of 51 cm were

associated with significant severe hail, which defines

the probability of detection (POD). Conversely, we

determined the fraction of warnings for which sig-

nificant hail was forecast but no significant hail was

reported, which defines the false alarm ratio (FAR).

The POD and FAR are derived for a combined set of

warnings: 1) those with a hail tag of 51 cm (21 in.) and

2) those warnings with a hail tag of 51 cm or with an

AACP. If an AACP was actively generated during a

warning, we assume for this analysis that hail of 51 cm

was predicted. POD and FAR statistics and the sample

sizes (parametersA–C) used to compute these statistics

are provided in Table 3.

The results show that 13.9% of significant hail

events were captured by NWS warnings with hail tags

of 51 cm but 75.3% of these tagged warnings were false

alarms, namely that hail of 51 cm never occurred de-

spite being tagged. Warnings during AACP generation

or with a hail tag of 51 cm captured 98.5% of these

reports. FAR increases by ;11% when AACPs are

included. The critical success index (CSI) increases by

FIG. 10.GOES-16 IR imagery of randomly selected mesoscale convective systems at the time when severe winds were

reported. Images are centered on the location where severe wind was reported. AACPs embedded within theMCS anvils

are identifiedwithwhite arrows: (a) 1302UTC11 Jun2017overMinnesotawith 36ms21 (80.6mi h21)wind, (b) 0032UTC

17 Jun 2017 over Nebraska and Iowa with up to 49.4m s21 (110.5 mi h21) wind, (c) 0242 UTC 3 Jul 2017 over Nebraska

with 33.4ms21 (74.8 mi h21) wind, and (d) 0302 UTC 4 Jul 2017 over Oklahoma with 31.4m s21 (70.2 mi h21) wind.
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0.04 because the substantial POD increase outweighs

the relatively small FAR increase.

It is important to note that unreported large hail

events or inaccurate hail size reports will bias the

statistics, but these biases are inherent to all severe

weather studies dependent on reports. It is likely that

significant hail occurs more frequently than the re-

ports suggest, which would lower the FAR statistics,

but there is no way to know this for sure. FAR could

also be lowered if, soon after forecaster identified an

AACP, they were to look at radar and environmental

information to see if significant hail was a realistic

possibility before inserting a tag of 51 cm. Future

work should include comparisons of NWS warnings

and AACP with radar-derived hail size estimates,

which are also imperfect but offer a more spatially

continuous indication of hail swath unbiased by pop-

ulation density. Nevertheless, based on the sample of

storms analyzed here, the large increase in POD in-

dicates that forecasters’ recognition of an AACP at

the time of a warning could improve their confidence

that significant hail will occur and encourage them to

increase their hail size tag.

4. Summary

Although the AACP has been recognized in satellite

imagery for over 35 years and has been qualitatively

linked to the occurrence of severe weather in numerous

studies, few studies to date have 1) analyzed AACP

storm dynamics using ground-based radar and lightning

observations, 2) compared AACP storm characteristics

with non-AACP severe storms, and 3) quantified

AACP–severe weather relationships and lead time rel-

ative to NWS warnings. The results of this study dem-

onstrate that, on average, storms that produce anAACP

are an especially intense subset of deep convection,

featuring the highest cloud tops, strongest updrafts,

most lightning, a high frequency of severe weather, and

characteristics of a supercell storm in about half the

cases. The first indicators of an AACP precede severe

weather by over 30min on average, and preceded NWS

warnings in 25% of severe AACP storms. Generation of

an AACP during an NWS warning showed a large in-

crease in the likelihood that significant hail would occur.

In the warning process, forecasters are often

considering multiple, complex datasets that provide

near-real-time inferences of in-storm dynamical and

microphysical processes linked to severe weather. The

NOAA NEXRAD radar network has gaps and

deficiencies, so the existence of anAACP in underobserved

regions can be used over theUnited States and globally as a

key decision aid for severeweatherwarning.AACPs can be

identified in GEOsat or low-Earth-orbiting satellite

imagery by anyone after a limited amount of training,

enabling a forecaster to quickly recognize these significant

severe storms. This is especially true when 1-min or better

super rapid scan imagery is available, which allows one

to best see the, sometimes, subtle indicators of an AACP

and maximize lead time. The presence of an AACP

FIG. 11. (left) The distribution of time difference (min) between when an AACP first appeared and the first severe weather was reported

(black), and the time difference between the firstNWS severe thunderstormor tornadowarning andfirst severeweather report (red). Positive

values indicate thatAACP or warning appeared before severe weather based on 236 storms that had anAACP, warning, and severe weather

report. (right) The time difference between theAACPappearance andNWS’swarning (black), with positive values indicating that theAACP

appeared first (25% of the population). Shown is the difference between the AACP and warning time, expressed as a percentage relative to

maximum lead time (blue) with positive values indicating that the AACP appeared before the first warning was issued.

OCTOBER 2018 BEDKA ET AL . 1177



could improve forecaster confidence to issue a warning

in situations where radar signals are ambiguous or radar

data are of reduced quality or unavailable. In addi-

tion, AACPs can be used to quickly identify the most

intense storms, providing valuable situational awareness.

Monitoring AACP characteristics can help a forecaster

identify updraft intensification or decay that may not be

depicted well in a single volume of NEXRAD data

available in routine NOAA/NWS forecast operations.

Knowledge that an updraft has recently intensified,

especially when identified in super rapid scan imagery,

can influence a forecaster decision to issue a warning

and possibly extend warning lead time. Given that

AACPs have been documented throughout the world,

and the majority are not observed byDoppler radar, the

AACP-based severe storm identification capability

could help save lives and protect property. Although

the ENTLN analysis in this paper indicates that light-

ning flash rate increases sharply as updrafts intensify

and AACPs are produced, future work should be de-

voted to understanding how the first evidence of an

AACP compares with output from lightning jump de-

tection algorithms based on GOES-R series Geosta-

tionary Lightning Mapper data, which will be analyzed

in the warning process for many years to come.

The cases featured in this paper were located primarily

across theMidwest and SoutheastUnited States during the

spring and summer, so there is some uncertainty as to how

often AACPs occur in other regions/seasons across the

United States and the severity of these storms compared

to the results described above. Supercell storms and ex-

tremely prominent overshooting updrafts (Cooney et al.

2018) are most common in the Midwest and Southeast,

so we would expect AACPs to be most frequent in these

regions. However, storms with AACPs certainly occur

elsewhere and during other times of year according to

Brunner et al. (2007). Future work should be devoted to

analyzing significant severe weather occurrences in other

regions/seasons to determine how often AACPs are as-

sociated with these events.

Lingering areas of uncertainty lie with the in-

terpretation of AACP IR temperature and microphys-

ics. This temperature and/or microphysical ambiguity,

especially when evident within neighboring storms

(Fig. 1), will challenge a forecaster’s ability to un-

derstand and identify AACPs. Convection-permitting

models could be used to address this uncertainty, such as

those described by Wang et al. (2016) and Homeyer

et al. (2017) and references therein, provided they can

generate realistic simulations of multiple AACPs with

disparate temperature and microphysics in relatively

close proximity to each other. Another avenue of re-

search would be to pair space- (i.e., CALIOP; Setvák
et al. 2013) or airborne lidar observations of AACPs

with satellite IR and nearby temperature profiles from

rawinsonde or reanalysis to understand the vertical

distribution of clouds and their ambient temperature

environment. Radar volumes such as those from GridRad

would be required to capture the storm temporal evo-

lution to determine how inferred OT region height and

updraft intensity relate to AACP height, temperature,

and reflectance.

Although human analysts can identify AACPs with

high accuracy, an automated AACP detection algorithm

is required to determine the global distribution of AACP

storms, extend AACP–severe weather analyses beyond a

limited number of days, and analyze and quantify the

impact of AACPs on stratospheric composition. First-

generation AACP detection methods developed within

the GOES-R Algorithm Working Group (Bedka et al.

2011) and in Europe (Ir�si�c �Zibert and �Zibert 2013)

demonstrated that automated detection is possible, but

there is opportunity to improve upon thesemethods using

advanced pattern recognition approaches.
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