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Motivation

• Current algorithms to forecast the evolution of convection rely exclusively on

geostationary IR data (geoIR). Several approaches (including Vila et al., 2008; Autonès, 

2012; Fiolleau and Roca, 2013; Liu et al., 2015) have been developed to detect, delineate, 

track and forecast the evolution of convective systems based on geoIR brightness

temperatures very limited sensitivity of the measurements to the storm under the

cloud tops

• Satellite measurements that are more directly sensitive to the convection below the

cloud tops are available today from low-Earth-orbit microwave radiometers, but the

constellation of microwave radiometers is heterogeneous different sensors have

different channel combinations, different viewing geometries, different spatial

resolutions, and different measurement uncertainties – and does not provide data with a 

regular temporal sampling.

Develop a novel approach which can ingest all the available storm-sensitive satellite 

data, namely the regularly available geostationary IR as well as intermittent low-Earth-

orbit passive microwave, for a specific storm at a specific time, and produce an analysis 

of the storm structure at neighboring instants in time, to analyze the evolution of the 

storm in time and nowcast its evolution in the near future.
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Mesoscale convective system over Burkina Faso and Mali as seen by the geostationary IR (Meteosat 12 m brightness temperatures, upper panel) and by a 

microwave sounder (NOAA-19 MHS’s 89 and 190.3 GHz channel, bottom panel). Note how the sounder clearly detects the cores of deep convection within the

cloud deck delineated by the geoIR. The ill-fated Air Algérie flight AH 5017 took off from Ouagadougou (1.57oW 12.31oN) at 01:15 Z, ingested frozen 

hydrometeors in its engines when it flew over the microwave-coldest portion of this system (the darkest navy pixel in the panel to the right — see Haddad et al., 

2017) and crashed at 01:47 Z near 1.08oW 15.13oN. The panels illustrate the two data types that we propose to merge.
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Framework and Objetives

• Automate the merging of geoIR with intermittent low-Earth-orbit passive microwave data

• Use ML-based algorithms to analyze storm structure and evolution from 17 years’ worth of observations, and 

extract models that can nowcast storm evolution 3 hours into the future

• Implement an on-line system that can nowcast in real time (based on geoIR from the present back to 6 hours in the 

recent past plus the microwave data from the most recent microwave satellite pass)



Proposed Methodology
GeoIR-based detection and tracking 

Tracking 
Methodologies

Image overlap based on fixed 
temperature threshold

ForTrACC
(Vila et al., 2008)

“Seed and Grow” based on local 
minima

TOOCAN
(Fiolleau et al., 2013)

TOOCAN

ForTrACC



Proposed Methodology
mm-wave retrievals

Reference global datasets of near-coincidences between the observations of each radiometer

type and a reference vertically-profiling radar are used to produce empirical Bayesian

instantaneous estimates of a set of 6+ geophysical variables

• FLAG = the binary flag indicating whether condensed water in concentrations above a 

(low) threshold of 0.05 g/m3 is detected above the freezing level

• H0.05 = the maximum height above mean sea level (AMSL) reached by condensed water 

concentrations greater than 0.05 g/m3

• H0.2 = the maximum height AMSL where the condensed water concentration exceeds 0.2 

g/m3

• PC1 (CWC) = the first vertical principal component of the Condensed Water Concentration 

above 5 km – essentially a vertical average of the condensed water content

• PC2 (CWC) = the second vertical principal component of condensed water mass above 5 

km – essentially the average above 8.5 km minus the average between 5 and 8.5 km

• RH = the average relative humidity above 5 km 

• CLASS = the type (convective/stratiform) of the precipitation

Half the reference (radar+radiometer) coincidence dataset is used to define the Bayesian 

retrieval, and the other half is used to quantify the uncertainty as a function of the 

observed brightness temperatures.



Proposed Methodology
mm-wave retrievals

 

 
Figure 6: Example illustrating the utility of the second microwave variable H0.05 derived from the TMI measurements made 
around 02:25 Z on 1 June 2009 over a portion of the Atlantic Inter-Tropical Convergence Zone between Brazil to the 
southwest and Senegal to the northeast. The left panel shows the brightness temperatures measured by TMI’s 89 GHz V-
polarized channel – the clearly visible cold (blue) regions are the columns with marked out-of-beam scattering of the 
upwelling radiation, indicating a deep column of ice hydrometeors. The multi-channel radiances were used to estimate the 
maximum height AMSL where the condensed water content exceeded 0.05 g/m3 (as explained in Haddad and Park, 2010), 
and the results are shown in the panel to the right. The significance of this example is highlighted in the panel to the right, 
where the line segment is the trajectory of Air France flight AF447, which manifestly flew through the top of the deepest 
convective core less than 15 minutes before it crashed (see Haddad and Park, 2010). The r.m.s. uncertainty in the retrieved 
H0.05 (estimated from the testing half of the global reference coincidence dataset) varies between 300 and 900 meters over 
the observed region. 

 



Reference training/testing dataset 
for analysis and nowcasting

Two Modes

Analysis Mode A Nowcasting Mode N

IR Data

•a = area with 
temperature < 235K

•b = the longitude and 
latitude of the center of 
the best-fit ellipse

•c = the minimum IR 
temperature within the 
system

•d ...k = other 11 
parameters

MW Data

•k = the area where H0.2 
> 5 km

•l = the area where H0.05 
> 5 km

•m= the area where PC1 > 
0.2 g/m3,

•n = the area where PC2 > 
- 0.2 g/m3

•o = average value of RH

•p = convective/stratiform
proportion

F(a1, b1, c1, d1, … , a12, b12, c12, d12;

k, l, m, n, o, p, t) = (a13, b13, c13, d13;

… ; a18, b18, c18, d18)

Intermitent

3 hours forecast -1/2 hour

interval

F operator - ML approach

G operator - ML approach

6 hours -1/2 hour interval



Reference training/testing dataset 
for analysis and nowcasting

Schematic diagram summarizing the workflow in the microwave-pixel-level mode A



Reference training/testing dataset 
for analysis and nowcasting

Schematic diagram summarizing the workflow in the storm-level mode N



Preliminary Results

A preliminary analysis of 18 months’ worth of merged global geoIR data, which,

• Processed through the ForTrACC delineation and tracking algorithm,

• Pruned to retain only those storms that were observed by the SAPHIR sounder (the only microwave 

sounder with a purely tropical orbit, which guarantees relatively frequent revisits).

Correlation (left panel) and average normalized residual error (right panel) between the future storm geoIR area at different future half-

hour time steps (horizontal axis) and “the past” geoIR area (in blue) or the past area augmented by the cold-differential microwave area (in 

red). The future area is a single scalar, “the past” is the scalar consisting of the second-order polynomial combination whose coefficients 

maximize the correlation with the future area. The correlation is greater and the error smaller with the microwave data.



Workplan

Construction of 
reference 

archive

Generate estimates of 
storm structure from all 

microwave 
observations at pixel 

resolution

Delineate storm 
histories from the 

merged IR data

Inject 1) in 2), and 
divide the result into a 

learning reference 
subset RL and a test 

subset RT

Dynamic 
learning for 
nowcasting

Implement and test 
advanced learning 

procedures to use RL to 
infer the storm-level IR-

evolution.

Quantify the 
uncertainty using RL

Dynamic 
learning for 

analysis

Re-format the 
reference data to 
represent the 5x5 
subgrids about a 

microwave grid point

Re-segment the data 
according to the delay 
between consecutive 

microwave data.

implement and test 
advanced learning 

procedures to use RL to 
infer the pixel-level 

microwave evolution



Summary and Possible Outcomes

• The use of intermittently available passive-microwave data to analyze the three-

dimensional structure and evolution of convective storms has not received specific 

attention by the scientific community, in spite of its clear relevance.

• At present, the main issue for the operational applicability of the proposed 

system is the latency between microwave data acquisition and their availability for 

processing. The current latency time is ~1 hour. Once the utility of the data is 

demonstrated by the proposed first version of the nowcasting system, the latency 

can be reduced to that of the operational (and new constellations) satellites.

• Another application for the quantitative storm context is to the analysis and 

monitoring of the Hadley circulation. While different analyses indicate a poleward

expansion of the width of “the tropics” (the width of the Hadley circulation) by about 

two degrees over the past two decades, the changes in precipitation patterns that 

would accompany this expansion have not been quantified. The quantitative 

characterization of the storm context (instead of surface precipitation) will enable to 

understand this process.


