Sounding MTG-IRS products from
EUMETSAT’s Nowcasting SAF

8 April 2021
Xavier Calbet (AEMET)
Niobe Peinado-Galan (AEMET)
Jana Campa (ARSO)




1. NWC SAF satellite Humidity And
Instability (sSHAI) product, infrared
hyperspectral retrievals: limitations
and results

2. Improving MTG-IRS retrievals
I. Using Surface Stations
II.Using MSG 10.8 micron corrections

3. Outlook

ALMe



1. NWC SAF satellite Humidity And
Instability (sSHAI) product, infrared
hyperspectral retrievals: limitations
and results

2.

ALMe



Introduction

* Infrared Hyperspectral Sounders work with thousands of
channels: 8000 (1ASI), 2200 (CrlS), ~2500 (MTG-IRS)

* From them a «high» resolution vertical profile of T (1 K accuracy
In 1 km layers) and WV (10-15% accuracy in 2 km layers)

* MTG-IRS will have a spatial resolution of 4 km (7 km over
Europe) with a sampling of 30 min - many profiles (4D cube)

* Ideally this information should be summarised for particular
applications — i.e. CAPE and CIN for Convection

* CAPE and CIN are extremely sensitive to uncertainties that
MTG-IRS will have
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CAPE Uncertainties

Jana Campa, 2020: https://www.nwcsaf.org/aemetRest/downloadAttachment/5821

SBCAPE histogram - eigenvector perturbations

0.0030 -
1 ; ==== Mean SBCAPE
i - Median SBCAPE
0.0025 1 —— 0Ong Interp SBCAPE
H
E N = 1000
i Mesni CAPE = 722.74 |fig
0.0020 H i CAPE = 742 60 Jfkg
:
g !
& i
£ 00015 !
o ]
E i
0.0010 |
| :
0.0005 ﬂ_|-|.r
0 500 1000 1500 2000 2500 3000 3500 4000
CAPE [)/kg]
SBCAPE histogram - eigenvector perturbations
0.00030 »
==== Mean SBCAPE
+ Median SBCAPE
0.00025 —— Orig Interp SBCAPE
N = 1000
Mean CAPE = 4500 31 kg
0.00020 _ B Std CAPE = 2086502 kg
T -
3 0.00015
(] -
=
0.00010
0.00005
0.00000 e

CAPE uncertainties

2000

4000

6000
CAPE [)/kg]

8000 10000 12000

frequency

Ep———

MUCAPE histogram - eigenvector perturbations

0.0030

0.0025

0.0020 4

0.0015 4

0.0010 4

0.0005 4

==== Mean MUCAPE
Median MUCAPE
—— Orig Interp MUCAPE

N = 1000 |
Mean CAPE = BO3 A
Std CAPE

nﬂhﬂ—rﬂ_n-n_n

0.0000
0

0.00030

500

1000

T
1500

2000 2500 3000
CAPE [)/kg]

3500 4000

MUCAPE histogram - eigenvector perturbations

0.00025 4

0.00020 4

0.00015 4

0.00010

0.00005 4

==== Mean MUCAPE
Median MUCAPE
— Orig Intérp MUCAPE

N
Mean CAPE = 481
Std CAPE = 1987 36

ihe.

0.00000

2000

4000

6000
CAPE [)/kg]

8000 10000 12000

MLCAPE histogram - eigenvector perturbations

0.0030 .
H ==== Mean MLCAPE
H Median MLCAPE
0.0025 H —— Orig Interp MLCAPE
H
0.0020 i
> i
n
5 H
£ 0.0015 4 .
o '
g H
= i
0.0010 H
0.0005
0.0000 + y T e T T T
500 1000 1500 2000 2500 3000 3500 4000
CAPE [J/kg]
MLCAPE histogram - eigenvector perturbations
0.00030 T
H ~=== Mean MLCAPE
i
H | Median MLCAPE
H
0.00025 4 2 —— Orig Interp MLCAPE
it
. = = 1000
M Mean CAPE = Jeg
0.00020 T BTE Std CAPE = 1711 16 g
by ol ol
i 0.00015 4
3
E
0.00010
0.00005
0.00000 }_ﬂ-rrﬂ_ —_—
2000 4000 6000 8000 10000 12000
CAPE [Ikg]

of the order of 700 J/kg for CAPEs of 500 J/kg

AMer

B [ i B Uit



Introduction

* Priority for MTG-IRS Soundings for Nowcasting — High
Accuracy — Best possible instability indices (CAPE, CIN,...) with
low latency + spatial and temporal homogeneity

* The NWC SAF MTG-IRS sounding Satellite Humidity And
Instability product (sSHAI) product is being taylored for this
purpose:

> Low latency: Non-linear Regression Retrieval based on
Machine Learning method (Kernel Ridge Regression)

> High Accuracy: Algorithm will be trained and used within a
spatial and temporal domain defined by the user

> High Accuracy: Additional NWP Forecast input may be used
for higher accuracy

> Increased Accuracy: Needs to be complemented with other

observations: surface based, MTG FCI, etc. .
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Statistics for the NWC SAF sSHAI Retrievals for

IASI as a proxy for MTG-IRS: NO Forecast as input

Comparison with ECMWF Analyses
Niobe Peinado-Galan: htt s://www.nwcsaf.org/aemetRest/downloadAttachment/6294
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Statistics for the NWC SAF sSHAI Retrievals for

IASI as a proxy for MTG-IRS: with Forecast as input

Comparison with ECMWF Analyses
Niobe Peinado-Galan: https://www.nwcsaf.org/aemetRest/downloadAttachment/6294
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MTG-IRS Retrieval Results

* Best solution for improved accuracy and spatial and temporal
homogeneity are RFCC (Retrievals using Forecast as input
trained on cloudy scenes and used everywhere)

* Despite this good result for a retrieval, it is still NOT good
enough for convection applications
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Improving MTG-IRS Retrievals

* Try a few quick concepts in a case study: Spain, 15/07/2015

* Modify surface parameters (T and WV) using measurements
from surface stations

* Modify surface parameters (T) using MSG (IR 10.8) images
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Case Study: Spain, 15/07/2015



Case Study: Spain, 15/07/2015

* «Easy» case: synoptic situation is constant — «Poor man’s» Nearcast

* Convection triggered by solar heating
* |IASI| overpass at 9:50Z
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Case Study: Spain, 15/07/2015

* «Easy» case: synoptic situation is constant

* Convection triggered by solar heating

187.: Convection

o g
AT

10Z: No clouds
IASI overpass




Case Study: Spain, 15/07/2015

* Simplifying plots -

> Definition for Forecasts and Retrievals:
Unstable Locations = CAPE > 500 J/kg and CIN < 50 J/kg
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Forecasts

* Forecasts:

10Z: Unstable locations
approximately match
future (~17Z7) storm locations

Unstable locations from Forecast

' L
m Unstable locations at 10Z
»= Storm locations at 167

Unstable locations from Forecast

' Ll
B Unstable locations at 167
¥ Storm locations at 167

—”

16Z: Unstable locations
completely off!! Model
generating its «own» convection?
— We only analyse FCT at 10Z
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2. Improving MTG-IRS retrievals
I. Using Surface Stations
.

3.
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Surface Stations

* Surface Automatic Station Locations

Station Location
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Fct and Ret versus Surface Stations
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* +: There is a correlation!!

- Unfortunately, the dispersion is quite high — Not enough accuracy for
instability — Point to area collocation issue? Spanish complex terrain
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Regression Kriging

Fct and Ret versus Surface Stations

* Regression Kriging of Forecasts and Retrieals versus surface
stations

Retrievals Retrievals

Forecast NO +
Forecast Forecast

Raw

Temperature 2.0 2.7 2.4
STDV (K)

Kriging

Temperature

STDV (K)

Kriging
Mixing Ratio
STDV (g/kg)
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Forecasts + Kriging

* Forecasts:

Unstable locations from Kriging Corrected Forecast

10Z Raw Forecasts

Unstable locations from Forecast
T T
m Unstable locations at 10Z

= Storm locations at 167

T
m Unstable locations at 10Z
¥ Storm locations at 167

10Z Forecast with Kriging:
extends the unstable region
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Retrievals with NO Forecasts + Kriging

* Retrievals with NO Forecast:

Unstable locations from Kriging Corrected Retrievals with NO Forecast

—
« Unstable locations at 10Z
- Storm locations at 16Z

10Z Raw Retrievals

Unstable locations from Retrievals with NO Forecast
T T
Unstable locations at 107

¥ 5Storm locations at 162

10Z Retrievals with Kriging:
reduces unstable region
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Retrievals with Forecasts + Kriging

* Retrlevals Wlth ForecaSt Unstable locations from Kriging Corrected Retrievals with Forecast

« Unstable locations at 10Z
y= Storm locations at 162

10Z Raw Retrievals

Unstable locations from Retrievals with Forecast
T T
+ Unstable locations at 1072

»= Storm locations at 162

10Z Retrievals with Kriging:
Reduces unstable region
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Improving MTG-IRS retrievals

.
II.Using MSG 10.8 micron corrections
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MSG 10.8 micron channel

* MSG 10.8 micron channel BT versus surface stations T <~ Avoids the point to
area collocation issue? = More similar to MTG-IRS

* Based on the strong correlation between Skin Temperature and Surface Air
Temperature

MSG 10.8 micron BT versus Surface Station Temperature
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Retrievals with Forecasts + MSG Correction

° Retrlevals Wlth ForecaSt Unstable locations from MSG Corrected Retrievals with Forecast

T T
+ Unstable locations at 10Z
»- Storm locations at 167

10Z Raw Retrievals

Unstable locations from Retrievals with Forecast

T
+« Unstable locations at 1072
»= Storm locations at 162

10Z Retrievals with MSG
10.8 micron temperature
correction: reduces unstable

M region slightly
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Retrievals with Forecasts + MSG Correction

Unstable locations for Retrievals with FCST corrected with MSG
ey e e MSG 0900Z

« Unstable locations at 102
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* Integrating Surface Station data or MSG corrections has
Its Issues

* Still, corrected retrievals or forecasts seem reasonable

* Need to test various algorithms and possibly receive
feedback from users - Set up beta processing for
continous supervising - In EWC would be ideal!

* Untested yet: Use of synthetic MTG-IRS data,
Nearcasting, EUMETSAT Secretariat IASI L2, ...

* Any ideas or collaboration welcome!
* Xcalbeta@aemet.es
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